Mathematical Programming

, Volume 106, Issue 1, pp 25–57 | Cite as

On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming

Article

Abstract.

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics are also considered that allow faster performance. This method has been implemented in the IPOPT code, which we demonstrate in a detailed numerical study based on 954 problems from the CUTEr test set. An evaluation is made of several line-search options, and a comparison is provided with two state-of-the-art interior-point codes for nonlinear programming.

Keywords

Nonlinear programming Nonconvex constrained optimization Filter method Line search Interior-point method Barrier method 

Mathematical Subject Classification (2000):

49M37 65K05 90C30 90C51 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, H. Y., Shanno, D. F., Vanderbei, R. J.: Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions. Computational Optimization and Applications, 23 (2), 257–272 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Byrd, R. H., Gilbert, J. Ch., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89, 149–185 (2000)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Byrd, R. H., Hribar, M. E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9 (4), 877–900 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Byrd, R. H., Liu, G., Nocedal, J.: On the local behavior of an interior point method for nonlinear programming. In: Griffiths, D. F., Higham, D. J. (eds), Numerical Analysis 1997, pages 37–56. Addison–Wesley Longman, Reading, MA, USA, 1997Google Scholar
  5. 5.
    Chamberlain, R. M., Lemarechal, C., Pedersen, H. C., Powell, M. J. D.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Mathematical Programming Study, 16, 1–17 (1982)MATHMathSciNetGoogle Scholar
  6. 6.
    Conn, A. R., Gould, N. I. M., Toint, Ph. L.: LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992Google Scholar
  7. 7.
    Conn, A. R., Gould, N. I. M., Toint, Ph. L.: Trust-Region Methods. SIAM, Philadelphia, PA, USA, 2000Google Scholar
  8. 8.
    Conn, A. R., Gould, N.I.M., Orban, D., Toint, Ph. L.: A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87 (2), 215–249 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Mathematical Programming, 91 (2), 201–213 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    El-Bakry, A. S., Tapia, R. A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. Journal of Optimization Theory and Application, 89 (3), 507–541 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fiacco, A. V., McCormick, G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley, New York, USA, 1968 Reprinted by SIAM Publications, 1990.Google Scholar
  12. 12.
    Fletcher, R.: Practical Methods of Optimization. John Wiley and Sons, New York, USA, second edition, 1987Google Scholar
  13. 13.
    Fletcher, R., Gould, N. I. M., Leyffer, S., Toint, Ph. L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithms for general nonlinear programming. SIAM Journal on Optimization, 13 (3), 635–659 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Mathematical Programming, 91 (2), 239–269 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fletcher, R., Leyffer, S., Toint, Ph. L.: On the global convergence of a filter-SQP algorithm. SIAM Journal on Optimization, 13 (1), 44–59 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Forsgren, A., Gill, P. E., Wright, M. H.: Interior methods for nonlinear optimization. SIAM Review, 44 (4), 525–597 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gould, N. I. M., Orban, D., Sartenaer, A., Toint, Ph. L.: Superlinear convergence of primal-dual interior point algorithms for nonlinear programming. SIAM Journal on Optimization, 11 (4), 974–1002 (2001)CrossRefGoogle Scholar
  18. 18.
    Gould, N. I. M., Orban, D., Toint, Ph. L.: CUTEr (and SifDec), a constrained and unconstrained testing environment, revisited. Technical Report TR/PA/01/04, CERFACS, Toulouse, France, 2001Google Scholar
  19. 19.
    Harwell Subroutine Library, AEA Technology, Harwell, Oxfordshire, England. A catalogue of subroutines (HSL 2000), 2002Google Scholar
  20. 20.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY, USA, 1999Google Scholar
  21. 21.
    Tits, A. L., Wächter, A., Bakhtiari, S., Urban, T. J., Lawrence, C. T.: A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM Journal on Optimization, 14 (1), 173–199 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ulbrich, M., Ulbrich, S., Vicente, L. N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Mathematical Programming, 100 (2), 379–410 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vanderbei, R. J., Shanno, D. F.: An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 13, 231–252 (1999)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, January 2002Google Scholar
  25. 25.
    Wächter, A., Biegler, L. T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Mathematical Programming, 88 (2), 565–574 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wächter, A., Biegler, L. T.: Line search filter methods for nonlinear programming: Motivation and global convergence. Technical Report RC 23036, IBM T.J. Watson Research Center, Yorktown Heights, USA, 2001; revised 2004. To appear in SIAM Journal on Optimization.Google Scholar
  27. 27.
    Waltz, R. A., Morales, J. L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Technical Report OTC 6/2003, Optimization Technology Center, Northwestern University, Evanston, IL, USA. To appear in Mathematical Programming AGoogle Scholar
  28. 28.
    Waltz, R. A., Nocedal, J.: KNITRO user's manual. Technical Report OTC 2003/05, Optimization Technology Center, Northwestern University, Evanston, IL, USA, April 2003Google Scholar
  29. 29.
    Yamashita, H.: A globally convergent primal-dual interior-point method for constrained optimization. Optimization Methods and Software, 10, 443–469 (1998)MATHMathSciNetGoogle Scholar
  30. 30.
    Yamashita, H., Yabe, H., Tanabe, T.: A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Technical report, Mathematical System Institute, Inc., Tokyo, Japan, July 1997. Revised July 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations