Skip to main content
Log in

A linear algorithm for integer programming in the plane

  • Published:
Mathematical Programming Submit manuscript

Abstract.

We show that a 2-variable integer program, defined by m constraints involving coefficients with at most φ bits, can be solved with O(m+φ) arithmetic operations on rational numbers of size O(φ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Reading: Addison-Wesley, 1974

  2. Banaszczyk, W., Litvak, A.E., Pajor, A., Szarek, S.J.: The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24 (3), 728–750 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Barvinok, A.: A course in convexity. vol. 54 of Graduate Studies in Mathematics. Providence, RI: Am. Math. Soc. 2002

  4. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. Assoc. Comput. Mach. 42, 488–499 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Proceedings of the 11th Annual European Symposium on Algorithms, ESA’ 2003, G.D. Battista, U. Zwick (eds.), vol. 2832 of LNCS, Springer, 2003. To appear in Computing

  6. Eisenbrand, F., Rote, G.: Fast 2-variable integer programming. In: Integer Programming and Combinatorial Optimization, IPCO 2001, K. Aardal, B. Gerards (eds.), vol. 2081 of LNCS, Springer, 2001, pp. 78–89

  7. Eisenbrand, F.: Short vectors of planar lattices via continued fractions. Inf. Proc. Lett. 79 (3), 121–126 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feit, S.D.: A fast algorithm for the two-variable integer programming problem. J. Assoc. Comput. Mach. 31 (1), 99–113 (1984)

    MATH  MathSciNet  Google Scholar 

  9. Gauß, C.F.: Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801

  10. Hirschberg D.S., Wong, C.K.: A polynomial algorithm for the knapsack problem in two variables. J. Assoc. Comput. Mach. 23 (1), 147–154 (1976)

    MATH  MathSciNet  Google Scholar 

  11. Kanamaru, N., Nishizeki, T., Asano, T.: Efficient enumeration of grid points in a convex polygon and its application to integer programming. Inter. J. Comput. Geo. Appl. 4 (1), 69–85 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Kannan R., Lovász, L.: Covering minima and lattice-point-free convex bodies. An. Math. 128, 577–602 (1988)

    MathSciNet  Google Scholar 

  13. Kannan, R.: A polynomial algorithm for the two-variable integer programming problem. J. Assoc. Comp. Mach. 27 (1), 118–122 (1980)

    MATH  MathSciNet  Google Scholar 

  14. Khintchine, A.Y.: Continued Fractions. Noordhoff, Groningen, 1963

  15. Knuth, D.: The art of computer programming. vol. 2. Addison-Wesley, 1969

  16. Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algor. 1, 142–186 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8 (4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. Assoc. Comp. Mach. 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scarf, H.E.: Production sets with indivisibilities. Part I: generalities. Econometrica 49, 1–32 (1981)

    MATH  MathSciNet  Google Scholar 

  20. Scarf, H.E.: Production sets with indivisibilities. Part II: The case of two activities. Econometrica 49, 395–423 (1981)

    MATH  MathSciNet  Google Scholar 

  21. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: Inter. Symp. Symb. Alg. Comp. ISSAC 91, ACM Press, 1991, pp. 128–133

  22. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, 1986

  23. Zamanskij, L.Y., Cherkasskij, V.D.: A formula for determining the number of integral points on a straight line and its application. Ehkon. Mat. Metody (in Russian). 20, 1132–1138 (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Eisenbrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbrand, F., Laue, S. A linear algorithm for integer programming in the plane. Math. Program. 102, 249–259 (2005). https://doi.org/10.1007/s10107-004-0520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0520-0

Keywords

Navigation