Skip to main content

Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs

Abstract.

A rigorous decomposition approach to solve separable mixed-integer nonlinear programs where the participating functions are nonconvex is presented. The proposed algorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-integer linear program) and two nonlinear programming problems (NLPs). A sequence of valid nondecreasing lower bounds and upper bounds is generated by the algorithms which converge in a finite number of iterations. A Primal Bounding Problem is introduced, which is a convex NLP solved at each iteration to derive valid outer approximations of the nonconvex functions in the continuous space. Two decomposition algorithms are presented in this work. On finite termination, the first yields the global solution to the original nonconvex MINLP and the second finds a rigorous bound to the global solution. Convergence and optimality properties, and refinement of the algorithms for efficient implementation are presented. Finally, numerical results are compared with currently available algorithms for example problems, illuminating the potential benefits of the proposed algorithm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global Optimization of MINLP Problems in Process Synthesis and Design.’’ Comput. Chem. Eng. 21, S445–S450 (1997)

  2. 2.

    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global Optimization Method of Mixed-Integer Nonlinear Problems.’’ AIChE Journal 46 (9), 1769–1797 (2000)

    Article  Google Scholar 

  3. 3.

    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A Global Optimization Method, α-BB, for General Twice-Differentiable Constrained NLPs-I. Theoretical Advances.’’ Comput. Chem. Eng. 22, 1137–1158 (1998)

    Article  Google Scholar 

  4. 4.

    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A Global Optimization Method, α-BB, for General Twice-Differentiable Constrained NLPs-I. Implementation and Computational Results.’’ Comput. Chem. Eng. 22 (9), 1159–1179 (1998)

    Google Scholar 

  5. 5.

    Adjiman, C.S., Schweiger, C.A., Floudas, C.A.: ‘‘Mixed-Integer Nonlinear Optimization in Process Synthesis.’’ In: D.Z. Du and P.M. Pardalos, (eds)., Handbook of Combinatorial Optimization (Kluwer Academic Publishers Inc., Dordrecht, 1998)

  6. 6.

    Al-Khayyal, F.A., Falk, J.E.: Jointly Constrained Biconvex Programming.’’ Mathematics Operations Research 8, 273–286 (1983)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Allgor, R.J., Barton, P.I.: Mixed-Integer Dynamic Optimization I: Problem Formulation.’’ Comput. Chem. Eng. 23 (4), 567–584 (1999)

    Article  Google Scholar 

  8. 8.

    Balas, E., Jeroslow, R.: Canonical Cuts on the Unit Hypercube.’’ SIAM J. Appl. Math. 23, 61–79 (1972)

    MATH  Google Scholar 

  9. 9.

    Bertsekas, D.L., Lower, G.S., Sandell, N.R., Posbergh, T.A.: Optimal Short Term Scheduling of Large-Scale Power Systems.’’ IEEE Trans. Automatic Control AC-28, 1–11 (1983)

    Google Scholar 

  10. 10.

    Duran, M.A., Grossmann, I.E.: An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs.’’ Math. Programming 36, 307–339 (1986)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Falk, J.E., Soland, R.M.: An Algorithm for Separable Nonconvex Programming Problems. ‘’ Manage. Sci. 15 (9), 550–569 (1969)

    MATH  Google Scholar 

  12. 12.

    Fletcher, R., Leyffer, S.: Solving Mixed Integer Nonlinear Programs by Outer Approximation. ‘’ Math. Programming 66, 327–349 (1994)

    MathSciNet  Google Scholar 

  13. 13.

    Floudas, C.A.: Nonlinear and Mixed Integer Optimization (Oxford University Press, New York 1995)

  14. 14.

    Floudas, C.A. et. al: Handbook of Test Problems in Local and Global Optimization (Kluwer Academic Publishers, Boston, 1999) http://titan.princeton.edu/TestProblems/chapter12.html

  15. 15.

    Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of Convex Function Relaxations Using Automated Code Generation Techniques.’’ Optimization and Engineering 3 (3), 305–326 (2002)

    Article  MATH  Google Scholar 

  16. 16.

    Geoffrion, A.M.: Generalized Benders Decomposition.’’ Journal of Optimization Theory Appl. 10, 237–262 (1972)

    MATH  Google Scholar 

  17. 17.

    Glover, F.: Improved Integer Programming Formulations of Nonlinear Integer Problems. ‘’ Manage. Sci. 22 (4), 455–460 (1975)

    MATH  Google Scholar 

  18. 18.

    Hoang, H.H.: Topological Optimization of Networks: A Nonlinear Mixed-Integer Model Employing Generalized Benders Decomposition.’’ IEEE Trans. Automatic Control AC-27, 164–169 (1982)

    Google Scholar 

  19. 19.

    Kleibohm, K.: Remarks on the Nonconvex Programming Problem.’’ Unternehmensf 11, 49–60 (1967)

    MATH  Google Scholar 

  20. 20.

    Kocis, G.R., Grossmann, I.E.: Relaxation Strategy for the Structural Optimization of Process Flow Sheets.’’ Ind. Eng. Chem. Res. 26 (9), 1869–1880 (1987)

    Google Scholar 

  21. 21.

    Kocis, G.R., Grossmann, I.E.: Global Optimization of Nonconvex MINLP Problems in Process Synthesis.’’ Ind. Eng. Chem. Res. 27 (8), 1407–1421 (1988)

    Google Scholar 

  22. 22.

    Laursen, P.S.: Simple Approaches to Parallel Branch and Bound.’’ Parallel Comput. 19, 143–152 (1993)

    Article  MATH  Google Scholar 

  23. 23.

    Maranas, C.D., Floudas, C.A.: Global Minimum Potential Energy Conformations of Small Molecules.’’ J. Global Optimization 4, 135–170 (1994)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Maranas, C.D., Floudas, C.A.: Finding All Solutions of Nonlinearly Constrained Systems of Equations.’’ J. Global Optimization 7 (2), 143–182 (1995)

    MATH  Google Scholar 

  25. 25.

    McCormick, G.P.: Computability of Global Solutions to Factorable Nonconvex Programs: Part I - Convex Underestimating Problems.’’ Math. Programming 10, 147–175 (1976)

    MATH  Google Scholar 

  26. 26.

    Murtagh, B.A., Saunders, M.A.: ‘‘MINOS 5.1 Users Guide,’’ Technical Report SOL 83-20R, Systems Optimization Laboratory, Department of Operations Research, Stanford University, 1987

  27. 27.

    Odele, O., Macchietto, S.: Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection.’’ Fluid Phase Equilibria 82, 47–54 (1993)

    Article  Google Scholar 

  28. 28.

    Queseda, I., Grossmann, I.E.: Global Optimization Algorithm for Heat Exchanger Networks.’’ Ind. Eng. Chem. Res. 32, 487–499 (1993)

    Google Scholar 

  29. 29.

    Reklaitis, G.V.: Scheduling of Multipurpose Batch Chemical Plants with Resource Constraints.’’ Ind. Eng. Chem. Res. 32, 3037–3050 (1993)

    Google Scholar 

  30. 30.

    Ryoo, H.S., Sahinidis, N.V.: Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design.’’ Comput. Chem. Eng. 19 (5), 551–566 (1995)

    Article  Google Scholar 

  31. 31.

    Sahinidis, N.V., Grossmann, I.E.: Convergence Properties of Generalized Benders Decomposition.’’ Comput. Chem. Eng. 15 (7), 481–491 (1991)

    Article  Google Scholar 

  32. 32.

    Smith, E.M.B., Pantelides, C.C.: ‘‘Global Optimization of General Process Models.’’ In: I.E. Grossmann, (ed.), Global Optimization in Engineering Design (Kluwer Academic Publishers Inc., Dordrecht, 1996, pp. 355-386

  33. 33.

    Smith, E.M.B.: ‘‘On the Optimal Design of Continuous Processes.’’ Ph.D. Thesis, University of London (October 1996)

  34. 34.

    Smith, E.M.B., Pantelides, C.C.: Global Optimization of Nonconvex MINLPs.’’ Comput. Chem. Eng. 21 (796), S791–S (1997)

  35. 35.

    Soland, R.M.: An Algorithm for Separable Nonconvex Programming Problems II: Nonconvex Constraints.’’ Manage. Sci. 17 (11), 759–773 (1971)

    MATH  Google Scholar 

  36. 36.

    Tolsma, J.E., Barton, P.I.: DAEPACK: An Open Modeling Environment for Legacy Code.’’ Ind. Eng. and Chem. Res. 6, 1826–1839 (2000)

    Article  Google Scholar 

  37. 37.

    Viswanathan, J., Grossmann, I.E.: A Combined Penalty Function and Outer-Approximation Method for MINLP Optimization.’’ Comput. Chem. Eng. 14 (7), 769–782 (1990)

    Article  Google Scholar 

  38. 38.

    Westerlund, T., Pettersson, F.: An Extended Cutting Plane Method for Solving Convex MINLP Problems.’’ Comput. Chem. Eng. 19 (S), 131–136 (1995)

    Article  Google Scholar 

  39. 39.

    Yee, T.F., Grossmann, I.E.: ‘‘Simultaneous Optimization Model for Heat Exchanger Network Synthesis.’’ In: I.E. Grossmann, (ed.), Chemical Engineering Optimization Models with GAMS, CACHE Design Case Studies Series 6 1991. www.gamsworld.org/minlp/minlplib/synheat.htm

  40. 40.

    Yee, T.F., Grossmann, I.E.: Simultaneous Optimization Models for Heat Integration -II. Heat Exchanger Network Synthesis.’’ Comput. Chem. Eng. 14 (10), 1165–1184 (1990)

    Google Scholar 

  41. 41.

    Zamora, J.M., Grossmann, I.E.: A Global Optimization Algorithm for the Synthesis of Heat Exchanger Networks with No Stream Splits.’’ Comput. Chem. Eng. 22 (3), 367–384 (1998)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kesavan, P., Allgor, R., Gatzke, E. et al. Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program., Ser. A 100, 517–535 (2004). https://doi.org/10.1007/s10107-004-0503-1

Download citation

Keywords

  • Mixed-integer nonconvex nonlinear programming
  • Decomposition algorithms
  • Global solution