Skip to main content
Log in

Global optimization of mixed-integer nonlinear programs: A theoretical and computational study

  • Published:
Mathematical Programming Submit manuscript

Abstract.

This work addresses the development of an efficient solution strategy for obtaining global optima of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems. In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 0–1 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch and bound algorithm for two-stage stochastic integer programs. Mathematical Programming. Submitted, 2000

  2. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Al-Khayyal, F.A., Sherali, H.D.: On finitely terminating branch-and-bound algorithms for some global optimization problems. SIAM J. Optim. 10, 1049–1057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms. Wiley Interscience, Series in Discrete Math. Optim. 2nd edition, 1993

  5. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1996)

    Article  MathSciNet  Google Scholar 

  6. Borchers, B., Mitchell, J.E.: An improved branch and bound for mixed integer nonlinear programs. Comput. Oper. Res. 21, 359–367 (1994)

    Article  MATH  Google Scholar 

  7. Borchers, B., Mitchell, J.E.: A computational comparison of branch and bound and outer approximation algorithms for 0-1 mixed integer nonlinear programs. Comput. Oper. Res. 24, 699–701 (1997)

    Article  MATH  Google Scholar 

  8. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib–A Collection of Test Models for Mixed-Integer Nonlinear Programming. INFORMS J. Comput. 15, 114–119 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dakin, R.J.: A tree search algorithm for mixed integer programming problems. Comput. J. 8, 250–255 (1965)

    MATH  Google Scholar 

  10. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Prog. 36, 307–339 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969)

    MATH  Google Scholar 

  12. Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht, 1999

  13. Fruhwirth, B., Burkard, R.E., Rote, G.: Approximation of convex curves with applications to the bicriteria minimum cost flow problem. European J. Oper. Res. 42, 326–338 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gruber, P.M.: Aspects of approximation of convex bodies. In: Gruber, P. M. Gruber, Wills, J. M., (eds.), Handbook of Convex Geometry. North-Holland, 1993

  15. Gruber, P.M., Kenderov, P.: Approximation of convex bodies by polytopes. Rendiconti Circ. Mat. Palermo, Serie II. 31, 195–225 (1982)

    Google Scholar 

  16. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31, 1533–1546 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Hamed, A.S.E., McCormick, G.P.: Calculation of bounds on variables satisfying nonlinear inequality constraints. J. Global Opt. 3, 25–47 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Hansen, P., Jaumard, B., Lu, S.-H.: An analytic approach to global optimization. Math. Prog. 52, 227–254 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer Verlag, Berlin, Third edition, 1996

  20. Lamar, B.W.: An improved branch and bound algorithm for minimum concave cost network flow problems. J. Global Opt. 3, 261–287 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. Econometrica 28, 497–520 (1960)

    MATH  Google Scholar 

  22. Lazimy, R.: Mixed-integer quadratic programming. Math. Prog. 22, 332–349 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Lazimy, R.: Improved algorithm for mixed-integer quadratic programs and a computational study. Math. Prog. 32, 100–113 (1985)

    MathSciNet  MATH  Google Scholar 

  24. McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Manag. Sci. 26, 282–296 (1980)

    MathSciNet  MATH  Google Scholar 

  25. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I – Convex underestimating problems. Math. Prog. 10, 147–175 (1976)

    MATH  Google Scholar 

  26. McCormick, G.P.: Nonlinear Programming: Theory, Algorithms and Applications. John Wiley & Sons, 1983

  27. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley Interscience, Series in Discrete Math. Opt., 1988

  28. Phillips, A.T., Rosen, J.B.: A parallel algorithm for constrained concave quadratic global minimization. Math. Prog. 42, 421–448 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Comput. 48, 337–361 (1992)

    MATH  Google Scholar 

  30. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers & Chemical Engineering 19, 551–566 (1995)

    Google Scholar 

  31. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Opt. 8, 107–139 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Global Opt. 8, 201–205 (1996)

    MATH  Google Scholar 

  33. Saipe, A.L.: Solving a (0,1) hyperbolic program by branch and bound. Naval Res. Logistics Quarterly 22, 497–515 (1975)

    MATH  Google Scholar 

  34. Savelsbergh, M.W.P.: Preprocessing and probing for mixed integer programming problems. ORSA J. Comput. 6, 445–454 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Global Opt. 12, 1–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Prog. 89, 459–478 (2001)

    MathSciNet  Google Scholar 

  37. Smith, E.M.B., Pantelides, C.C.: Global optimisation of general process models. In: Grossmann, I.E., (ed.), Global Optimization in Engineering Design. Kluwer Academic Publishers, Boston, MA, 1996, pp. 355–386

  38. Tawarmalani, M.: Mixed Integer Nonlinear Programs: Theory, Algorithms and Applications. PhD thesis, Department of Mechanical & Industrial Engineering. University of Illinois, Urbana-Champaign, IL, August 2001

  39. Tawarmalani, M., Ahmed, S., Sahinidis, N.V.: Global optimization of 0-1 hyperbolic programs. J. Global Opt. 24, 385–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Math. Prog. 93, 247–263 (2002)

    Article  Google Scholar 

  41. Thakur, L.S.: Domain contraction in nonlinear programming: Minimizing a quadratic concave function over a polyhedron. Math. Oper. Res. 16, 390–407 (1990)

    MATH  Google Scholar 

  42. Visweswaran, V., Floudas, C.A.: Computational results for an efficient implementation of the GOP algorithm and its variants. In: Grossmann, I.E., (ed.), Global Optimization in Engineering Design. Kluwer Academic Publishers, Boston, MA, 1996, pp. 111–153

  43. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Global Opt. 14, 217–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis.

Additional information

The research was supported in part by ExxonMobil Upstream Research Company, National Science Foundation awards DMII 95-02722, BES 98-73586, ECS 00-98770, and CTS 01-24751, and the Computational Science and Engineering Program of the University of Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawarmalani, M., Sahinidis, N. Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Program., Ser. A 99, 563–591 (2004). https://doi.org/10.1007/s10107-003-0467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0467-6

Keywords

Navigation