Skip to main content
Log in

Epsilon-proximal decomposition method

  • Published:
Mathematical Programming Submit manuscript

Abstract.

We propose a modification of the proximal decomposition method investigated by Spingarn [30] and Mahey et al. [19] for minimizing a convex function on a subspace. For the method to be favorable from a computational point of view, particular importance is the introduction of approximations in the proximal step. First, we couple decomposition on the graph of the epsilon-subdifferential mapping and cutting plane approximations to get an algorithmic pattern that falls in the general framework of Rockafellar inexact proximal-point algorithms [26]. Recently, Solodov and Svaiter [27] proposed a new proximal point-like algorithm that uses improved error criteria and an enlargement of the maximal monotone operator defining the problem. We combine their idea with bundle mecanism to devise an inexact proximal decomposition method with error condition which is not hard to satisfy in practice. Then, we present some applications favorable to our development. First, we give a new regularized version of Benders decomposition method in convex programming called the proximal convex Benders decomposition algorithm. Second, we derive a new algorithm for nonlinear multicommodity flow problems among which the message routing problem in telecommunications data networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A.: Numerical methods for nondifferentiable convex optimization. Math. Programming Study 30, 102–126 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)

    MATH  Google Scholar 

  3. Bertsekas, D.P., Gallager, R.G.: Data Networks, Prentice-Hall, 1987

  4. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargements of maximal monotone operators with application to variational inequalities. Set Valued Analysis 5, 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burachik, R.S., Sagastizábal, C., Svaiter, B.F.: ε-Enlargements of maximal monotone operators: theory and applications. Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, edited by M. Fukushima and L. Qi, Kluwer Academic Publishers, 1998, pp. 25–43

  6. Cominetti, R.: Coupling the proximal point with approximation methods. J. Optim. Theory Appl. 95(3), 581–600 (1997)

    Article  MATH  Google Scholar 

  7. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Programming 62, 261–275 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Chen, X., Fukushima, M.: Proximal quasi-Newton methods for nondifferentiable convex optimization. Math. Programming 85(2), 313–334 (1999)

    Article  MATH  Google Scholar 

  9. Eckstein, J.E., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Programming 55, 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Computers & OR 23(11), 1099–1118 (1996)

    Google Scholar 

  11. Fukushima, M.: A descent algorithm for nonsmooth convex optimization. Math. Programming 30, 163–175 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Berlin, 1993

  13. Idrissi, H., Lefebvre, O., Michelot, C.: Applications and numerical convergence of the Partial Inverse method. Optimization, Lecture Notes in Math 1405, Springer Verlag, 1989, pp. 39–54

  14. Kiwiel, K.C.: Proximity control in bundle methods for convex in nondifferentiable minimization. Math. Programming 46, 105–122 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Kiwiel, K.C.: A Cholesky dual method for proximal piecewise linear programming. Numerische Mathematik 68(3), 325–340 (1994)

    Article  MATH  Google Scholar 

  16. Kiwiel, K.C.: A bundle Bregman proximal method for convex nondifferentiable minimization. Math. Programming 85(2), 241–258 (1999)

    Article  MATH  Google Scholar 

  17. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Programming 76, 393–410 (1997)

    Article  MathSciNet  Google Scholar 

  18. Mahey, P., Ouorou, A., LeBlanc, L., Chifflet, J.: A new proximal decomposition algorithm for routing in telecommunication networks. Networks 31, 227–238 (1998)

    Article  MATH  Google Scholar 

  19. Mahey, P., Oualibouch, S., Pham D.T.: Proximal decomposition on the graph of a maximal monotone operator. SIAM J. Optim. 5(2), 454–466 (1995)

    MATH  Google Scholar 

  20. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Revue Française d’Informatique et de Recherche Opérationnelle 3, 154–179 (1970)

    MATH  Google Scholar 

  21. Minty, G.J.: Monotone operators in Hilbert Space. Duke Math. J. 29, 341–346 (1962)

    MATH  Google Scholar 

  22. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. 93, 273–299 (1965)

    MATH  Google Scholar 

  23. Ouorou, A., Mahey, P., Vial, J.-Ph.: A survey of algorithms for convex multicommodity flow problems. Management Sci. 46(1), 126–147 (2000)

    Google Scholar 

  24. Rebaï, R.: Optimisation de réseaux de télécommunications avec sécurisation. Ph.D Thesis, Université Paris -IX Dauphine, 2000

  25. Rockafellar, R.T.: Convex Analysis, Princeton Univ. Press, 1970

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    MATH  Google Scholar 

  27. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Analysis 7, 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Solodov, M.V., Svaiter, B.F.: A hybrid-projection proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MATH  Google Scholar 

  29. Solodov, M.V., Svaiter, B.F.: A comparison of rates of convergence of two inexact proximal point algorithms. In: Nonlinear Optimization and Related Topics, G. Di Pillo, F. Giannessi eds., Applied Optimization 36, pp. , Kluwer Academic Publishers, 2000

  30. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Spingarn, J.E.: Applications of the method of partial inverses to convex programming: decomposition. Math. Programming 32, 199–223 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ouorou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouorou, A. Epsilon-proximal decomposition method. Math. Program., Ser. A 99, 89–108 (2004). https://doi.org/10.1007/s10107-003-0371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0371-0

Keywords

Navigation