Skip to main content

Advertisement

Log in

Modulation of heat shock protein expression and cytokine levels in MCF-7 cells through photodynamic therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang D-Y et al (2021) Tumor Microenvironment-Responsive Theranostic Nanoplatform for Guided Molecular Dynamic/Photodynamic Synergistic Therapy. ACS Appl Mater Interfaces 13(15):17392–17403. https://doi.org/10.1021/acsami.1c03277

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Dong-Yang et al (2023) Self-Assembled Carrier-Free Nanodrugs for Starvation Therapy-Amplified Photodynamic Therapy of Cancer. Adv Healthc Mater 12(20):e2203177. https://doi.org/10.1002/adhm.202203177

    Article  CAS  PubMed  Google Scholar 

  3. Sorrin AJ et al (2020) Photodynamic therapy and the biophysics of the tumor microenvironment. Photochem Photobiol 96(2):232–259. https://doi.org/10.1111/php.13209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ben-Hur E (2020) Basic photobiology and mechanisms of action of phthalocyanines. Photodynamic therapy, 63–78. eBook ISBN9781003066897

  5. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitizers. Metal-Based Drugs, 276109. https://doi.org/10.1155/2008/276109

  6. Pacheco-Soares C et al (2014) Evaluation of photodynamic therapy in adhesion protein expression. Oncol Lett 8(2):714–718. https://doi.org/10.3892/ol.2014.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duan X et al (2016) Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc 138(51):16686–16695. https://doi.org/10.1021/jacs.6b09538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry, and cellular localization. Photodiagn Photodyn Ther 1(4):279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    Article  CAS  Google Scholar 

  9. Mirzaei SM, Oskuee RK, Sadri K, Sabouri Z, Far BF, Abdulabbas HS, Darroudi M (2023) Development of a Novel Sulfur Quantum Dots: Synthesis, 99mTc Radiolabeling, and Biodistribution. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04703-7

  10. Celli JP, Spring BQ, Rizvi I (2010) Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838. https://doi.org/10.1021/cr900300p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atta D, Elarif A, Al Bahrawy M (2023) Reactive oxygen species creation by laser-irradiated indocyanine green as photodynamic therapy modality: an in vitro study. Lasers Med Sci 38:213. https://doi.org/10.1007/s10103-023-03876-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Agostinis P et al (2011) Photodynamic therapy of cancer: An update. CA: A Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114

    Article  Google Scholar 

  13. Niu N, Zhang Z, Gao X, Chen Z, Li S, Li J (2018) Photodynamic therapy in hypoxia: near-infrared-sensitive, self-supported, oxygen generation nano-platform enabled by upconverting nanoparticles. Chem Eng J 352:818–827. https://doi.org/10.1016/j.cej.2018.07.049

    Article  CAS  Google Scholar 

  14. Kim J et al (2017) Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc 139(32):10992–10995. https://doi.org/10.1021/jacs.7b05559

    Article  CAS  PubMed  Google Scholar 

  15. Ernst BP, Wiesmann N, Gieringer R, Eckrich J, Brieger J (2020) HSP27 regulates viability and migration of cancer cell lines following irradiation. J Proteomics 226:103886. https://doi.org/10.1016/j.jprot.2020.103886

    Article  CAS  PubMed  Google Scholar 

  16. Konda P et al (2022) Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumour growth control via distinct hallmarks of immunogenic cell death. Am J Cancer Res 12(1):210

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J et al (2016) Effects of HSP27 downregulation on PDT resistance through PDT-induced autophagy in head and neck cancer cells. Oncol Rep 35(4):2237–2245. https://doi.org/10.3892/or.2016.4597

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Chen L, Liu M et al (2015) Heat shock protein 27 mediates gemcitabine sensitivity in pancreatic cancer cells. Int J Oncol 47(1):234–242. https://doi.org/10.3892/ijo.2015.2980

    Article  CAS  Google Scholar 

  19. Zhou F, Xing D, Chen WR (2008) Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment. Cancer Lett 264(1):135–144. https://doi.org/10.1016/j.canlet.2008.01.040

    Article  CAS  PubMed  Google Scholar 

  20. Ferrario A, Gomer CJ (2010) Targeting the 90 kDa heat shock protein improves photodynamic therapy. Cancer Lett 289(2):188–194. https://doi.org/10.1016/j.canlet.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  21. Kaneko K, Osada T, Morse MA et al (2020) Proteína de choque térmico 90-targeted photodynamic therapy permite o tratamento de tumores subcutâneos e viscerais. Comun Biol 3:226. https://doi.org/10.1038/s42003-020-0956-7

    Article  CAS  Google Scholar 

  22. Zhang XY et al (2015) Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells. Mol Brain 8(1):1

    Article  Google Scholar 

  23. Tan L, Shen X, He Z, Lu Y (2022) The Role of Photodynamic Therapy in Triggering Cell 3 Death and Facilitating Antitumor Immunology. Front Oncol 12:863107. https://doi.org/10.3389/fonc.2022.863107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Falk-Mahapatra R, Gollnick SO (2020) Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 96:550–559. https://doi.org/10.1111/php.13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghoochani SH et al (2023) Zn (II) porphyrin–encapsulated MIL-101 for photodynamic therapy of breast cancer cells. Lasers Med Sci 38(1):151. https://doi.org/10.1007/s10103-023-03813-2

    Article  PubMed  Google Scholar 

  26. Sabouri Z, Shakour N, Sabouri M et al (2024) Biochemical, structural characterization and assessing the biological effects of cinnamon nanoparticles. Biotechnol Bioproc E 29:165–175. https://doi.org/10.1007/s12257-024-00004-w

    Article  CAS  Google Scholar 

  27. Atta D, Gweily N (2024) Effect of micro-viscosity on the rotational diffusion: pulsed laser-based time-resolved single-molecule study. Opt Quant Electron 56:144. https://doi.org/10.1007/s11082-023-05709-5

    Article  Google Scholar 

  28. GulamMusawwir Khan MD, Wang Yi (2022) Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 11(3):356. https://doi.org/10.3390/cells11030356

    Article  CAS  PubMed  Google Scholar 

  29. Esquivel-Velázquez M et al (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35(1):1–16. https://doi.org/10.1089/jir.2014.0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Felcher CM, Bogni ES, Kordon EC (2022) IL-6 Cytokine Family: A Putative Target for Breast Cancer Prevention and Treatment. Int J Mol Sci 23:1809. https://doi.org/10.3390/ijms23031809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu W et al (2020) TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci Rep 10(1):1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chin AR, Wang SE (2014) Cytokines driving breast cancer stemness. Mol Cell Endocrinol 382:598–602. https://doi.org/10.1016/j.mce.2013.03.024

    Article  CAS  PubMed  Google Scholar 

  33. Sanguinetti A, Santini D, Bonafe M, Taffurelli M, Avenia N (2015) Interleukin-6 and pro-inflammatory status in the breast tumor microenvironment. World J Surg Oncol 13:129. https://doi.org/10.1186/s12957-015-0529-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tiveron RDR et al (2019) Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy. Braz J Biol 80:497–505. https://doi.org/10.1590/1519-6984.193748

    Article  PubMed  Google Scholar 

  35. Henrique Godoi B et al (2021) Can PDT Alter the Glycosylation of the Tumor Cell Membrane? IntechOpen. https://doi.org/10.5772/intechopen.94172

    Article  Google Scholar 

  36. Moayeripour SS, Behzadi R (2023) Experimental investigation of the effect of titanium nanoparticles on the properties of hydrophobic self-cleaning film. J Med Pharma Chem Res 5(4):303–316

    CAS  Google Scholar 

Download references

Funding

Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), grant number 2016/17984–1; 2021/09418–4; FINEP grant number 01.18.0053.00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Pacheco-Soares.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.I.B., Godoi, B.H., Da Silva, N.S. et al. Modulation of heat shock protein expression and cytokine levels in MCF-7 cells through photodynamic therapy. Lasers Med Sci 39, 135 (2024). https://doi.org/10.1007/s10103-024-04092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04092-1

Keywords

Navigation