Skip to main content
Log in

Enhancing tumor’s skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate how the introduction of Gold nanoparticles GNPs into a skin tumor affects the ability to absorb laser light during multicolor laser exposure. The Monte Carlo Geant4 technique was used to construct a cubic geometry simulating human skin, and a 5 mm tumor spheroid was implanted at an adjustable depth x. Our findings show that injecting a very low concentration of 0.01% GNPs into a tumor located 1 cm below the skin’s surface causes significant laser absorption of up to 25%, particularly in the 900 nm to 1200 nm range, resulting in a temperature increase of approximately 20%. It is an effective way to raise a tumor’s temperature and cause cell death while preserving healthy cells. The addition of GNPs to a tumor during polychromatic laser exposure with a wavelength ranging from 900 nm to 1200 nm increases laser absorption and thus temperature while preserving areas without GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting data

We confirm that all data related to this article is available for accessibility whenever required.

References

  1. Pashazadeh A, Boese A, Friebe M (2019) Radiation therapy techniques in the treatment of skin cancer: an overview of the current status and outlook. J Dermatological Treat, page 1–41

  2. Jeynes JCG, Wordingham F, Moran LJ et al (2019) Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using NP’s. Biomolecules 9(3):343

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bohara RA (2019) Introduction and types of Hybrid nanostructures for Medical Applications. Hybrid Nanostructures for Cancer Theranostics

  4. Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martı́nez Maestro D, del Rosal L (2014) Jaque. NP’s for photothermal therapies. Nanoscale 6(16):9494–9530

    Article  PubMed  Google Scholar 

  6. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  CAS  PubMed  Google Scholar 

  7. Ivan H, El-Sayed X, Huang, Mostafa A, El-Sayed (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated GNP’s. Nano Lett 5(5):829–834

    Article  Google Scholar 

  8. Xiaohua Huang Ivan H, El-Sayed W, Qian, Mostafa A, El-Sayed (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  Google Scholar 

  9. Marcella MAURO, Matteo CROSERA, Carlotta BIANCO et al (2015) Permeation of platinum and rhodium NP’s through intact and damaged human skin. J Nanopart Res 17:1–11

    Google Scholar 

  10. Valentine RM, Ibbotson SH, Wood K, Brown CT, Moseley H (2013) Modelling fluorescence in clinical photodynamic therapy. Photochem Photobiol Sci 12(1):203–213

    Article  CAS  PubMed  Google Scholar 

  11. Campbell CL, Brown CT, Wood K, Moseley H Modelling topical photodynamic therapy treatment including the continuous production of protoporphyrin ix. Phys Med Biol., 61(21):7507–7521.,2016.

  12. Campbell CL, Wood K, Brown CT, Moseley H (2016) Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Phys Med Biol 61(13):4840–4854

    Article  CAS  PubMed  Google Scholar 

  13. Zeng L, Gowda BHJ, Ahmed MG et al (2023) Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 22:10. https://doi.org/10.1186/s12943-022-01708-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D (2021) GNP’s in Cancer Theranostics. Front Bioeng Biotechnol 9:647905. https://doi.org/10.3389/fbioe.2021.647905

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cuplov V, Pain F, Jan S (2017) Simulation of nanoparticle-mediated near-infrared thermal therapy using gate. Biomed Opt Express 8(3):1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim D, Kim H (2022) Optimization of Photothermal Therapy Treatment Effect under various laser irradiation conditions. Int J Mol Sci 23(11):5928. https://doi.org/10.3390/ijms23115928PMID: 35682607; PMCID: PMC9180462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim D, Kim H (2023) Analysis of temperature behavior in biological tissue in photothermal therapy according to laser irradiation angle. Bioengineered 14(1):2252668. https://doi.org/10.1080/21655979.2023.2252668PMID: 37661750; PMCID: PMC10478739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim D, Paik J, Kim H (2023) Effect of GNP’s distribution radius on photothermal therapy efficacy. Sci Rep 13(1):12135. https://doi.org/10.1038/s41598-023-39040-6PMID: 37495612; PMCID: PMC10371995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanamori T, Miyazaki N, Aoki S et al (2021) Investigation of energy metabolic dynamism in hyperthermia-resistant ovarian and uterine cancer cells under heat stress. Sci Rep 11:14726. https://doi.org/10.1038/s41598-021-94031-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiaoren Tang Feng Cao Weiyuan Ma at al (2020) Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Practical Oncol Radiotherapy 25:323–326

    Article  Google Scholar 

  21. Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184

    Article  PubMed  Google Scholar 

  22. Gaipl US, Datta NR, Ordonez SG et al (2016) Local hyperthermia in combined modality treatment of cancer. Crit Rev Oncol Hematol 97:200–210

    Google Scholar 

  23. Mayer A, Vaupel P (2012) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Med Hemother 39:302–308

    Google Scholar 

  24. Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303

    Article  CAS  Google Scholar 

  25. Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278

    Article  Google Scholar 

  26. Wang W, Han T, Zhang X, Wu H, Yongan Shui (2007) &. Rayleigh Wave Reflection and Scattering Calculation by Source Regeneration Method. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(7), 1445–1453https://doi.org/10.1109/tuffc.2007.405

  27. Gucker FT, Lin H-M (1971) A method of verifying the coefficients an and bn of the Mie theory of light scattering by nonabsorbing isotropic spheres. Journal of Colloid and Interface Science, 35(1), 139–142https://doi.org/10.1016/0021-9797(71)90194-9

  28. Rajat Acharya (2017) Chap. 3 - Interaction of waves with medium, Editor(s): Rajat Acharya, Satellite Signal Propagation, Impairments and Mitigation, Academic Press, Pages 57–86, ISBN 9780128097328, https://doi.org/10.1016/B978-0-12-809732-8.00003-X

  29. Setchfield K, Gorman A, Simpson AHRW, Somekh MG, Wright AJ (2023) Relevance and utility of the in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]. Biomed Opt Express 14(7):3555–3583. https://doi.org/10.1364/BOE.493588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Reviews Mater 1:16014

    Article  CAS  Google Scholar 

  31. Chauhan VP et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Polyanskiy MN (2024) Refractiveindex.info database of optical constants. Sci Data 11:94. https://doi.org/10.1038/s41597-023-02898-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tuersun A, Yusufu P, Yimiti T, Sidike A (2017) Refractive index sensitivity analysis of GNP’s. Optik 149:384–390

    Article  CAS  Google Scholar 

  34. Dajun Fan Rongjie Li Minghan He (2023) Review of refractive index-matching techniques of polymethyl methacrylate in flow field visualization experiments. Int J Energy Res. https://doi.org/10.1155/2023/3413380

    Article  Google Scholar 

  35. Aleksandar Z, Tasic Bojan D, Djordjevic Dusan K, Grozdanic, Radojkovic N (1992) Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J Chem Eng Data 37(3):310–313

    Article  Google Scholar 

  36. YAKUBOVSKY Dmitry I, STEBUNOV Yury VKIRTAEV, Roman V et al Ultrathin and ultrasmooth gold films on monolayer mos2. Advanced Materials Interfaces, Volume 2023(Article ID 3413380):1900196

  37. Hale GM, Querry MR (1973) Optical constants of water in the 200 nm to 200 µm wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

  38. Shrivastav RP, Sardar DK (2004) Interaction of laser radiation with biological materials: a review. Prog Quantum Electron 28(1):1–43

    Google Scholar 

  39. Venugopalan V, Vogel A (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644

    Article  PubMed  Google Scholar 

  40. Fan H, Chen S, Du Z, Yan T, Alimu G, Zhu L, Ma R, Alifu N, Zhang X (2022) New indocyanine green therapeutic fluorescence nanoprobes assisted high-efficient photothermal therapy for cervical cancer. Dye Pigment 200:110174

    Article  CAS  Google Scholar 

  41. Ren Y, Qi H, Chen Q, Ruan L (2017) Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int J Heat Mass Transf 106:212–221

    Article  CAS  Google Scholar 

  42. Lilge SL (2013) and R. P. G. Brinkmann. Laser Induced Thermal effects in Biological tissues in Encyclopedia of Biophysics G. C. K. Roberts Ed. Springer, Berlin Heidelberg, pp 1299–1305

    Google Scholar 

  43. Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV (2022) Photothermal and photodynamic therapy of tumors with Plasmonic nanoparticles: challenges and prospects. Mater (Basel) 15(4):1606. https://doi.org/10.3390/ma15041606

    Article  CAS  Google Scholar 

  44. Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V (2019) Application of nanoparticles and nanomaterials in thermal ablation therapy of Cancer. Nanomaterials (Basel) 9(9):1195. https://doi.org/10.3390/nano9091195

    Article  CAS  PubMed  Google Scholar 

  45. D’Acunto M, Cioni P, Gabellieri E, Presciuttini G (2021) Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 32(19):192001. https://doi.org/10.1088/1361-6528/abe1ed

    Article  CAS  PubMed  Google Scholar 

  46. Yujuan Zhang Xuelin Zhan Juan Xiong (2018) Temperature-dependent cell death patterns induced by functionalized.com/scientific reports/, 8:8720(DOI:10.1038/s41598-018-26978-1):1–8

Download references

Acknowledgements

This work was supported by DGRSDT (the General Direction of Scientific Research and Technological Develop- ment, Ministry of Higher Education and Scientific research, Algeria).

Funding

This study received a financial support from Ministry of higher education and scientific research and DGRST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. A Dib.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerakni, F., Dib, A. & Attili, A. Enhancing tumor’s skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation. Lasers Med Sci 39, 130 (2024). https://doi.org/10.1007/s10103-024-04072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04072-5

Keywords

Navigation