Skip to main content
Log in

Does electrophysical agents work for cellulite treatment? a systematic review of clinical trials

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Cellulite, a perceived alteration in skin topography, is predominantly found in adipose tissue-rich body regions such as the hips, buttocks, thighs, and abdomen. Contrary to common belief, the etiology and pathophysiology of cellulite are not well-established or universally agreed upon. This lack of understanding about the actual etiology of cellulite directly influences the selection of suitable treatments that can address both the aesthetic and inflammatory aspects of the condition. Various treatment methods, including electrophysical agents like electric currents, radiofrequency, ultrasound, and photobiomodulation, have been tested. However, the questionable methodological quality of many studies complicates the determination of effective treatments for cellulite. In this study, we conducted a systematic review of clinical studies that utilized electrophysical agents in cellulite treatment. Methods: We employed the PICO (population, intervention, control, and outcome) process to develop our search strategy and establish inclusion/exclusion criteria. We searched five databases: Medline, Central, Scopus, Lilacs, and PEDro, for studies conducted between 2001 and July 2021 that involved cellulite treatment with electrophysical agents. To ensure systematicity and guide study selection, we adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Results: Our initial search yielded 556 articles: 379 from Medline, 159 from Central, and 18 from Lilacs. After applying our inclusion criteria, only 32 studies remained. Of these, only two (6.2%) were evaluated as having strong and good methodology via the QualSyst tool. Conclusions: Our findings indicate that the quality of evidence from clinical studies on the use of electrophysical agents for cellulite treatment remains subpar. Further studies with robust experimental designs and more precise assessment techniques are necessary. While our study does not refute the effectiveness of the techniques used for cellulite treatment, it underscores the need for additional well-designed trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Luebberding S, Krueger N, Sadick NS (2015) Cellulite: an evidence-based review. Am J Clin Dermatol 16(4):243–256. https://doi.org/10.1007/s40257-015-0129-5

    Article  PubMed  Google Scholar 

  2. Nürnberger F, Müller G (1978) So-called cellulite: an invented disease. J Dermatol Surg Oncol 4(3):221–229. https://doi.org/10.1111/j.1524-4725.1978.tb00416.x

    Article  PubMed  Google Scholar 

  3. Rossi AB, Vergnanini AL (2000) Cellulite: a review. J Eur Acad Dermatol Venereol 14(4):251–262. https://doi.org/10.1046/j.1468-3083.2000.00016.x

    Article  CAS  PubMed  Google Scholar 

  4. Emanuele E (2013) Cellulite: advances in treatment: facts and controversies. Clin Dermatol 31(6):725–730. https://doi.org/10.1016/j.clindermatol.2013.05.009

    Article  PubMed  Google Scholar 

  5. Querleux B, Cornillon C, Jolivet O, Bittoun J (2002) Anatomy and physiology of subcutaneous adipose tissue by in vivo magnetic resonance imaging and spectroscopy: relationships with sex and presence of cellulite. Skin Res Technol 8(2):118–24. https://doi.org/10.1034/j.1600-0846.2002.00331.x

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbaum M, Prieto V, Hellmer J, Boschmann M, Krueger J, Leibel RL, Ship AG (1998) An exploratory investigation of the morphology and biochemistry of cellulite. Plast Reconstr Surg 101(7):1934–1939. https://doi.org/10.1097/00006534-199806000-00025

    Article  CAS  PubMed  Google Scholar 

  7. Avram MM (2004) Cellulite: a review of its physiology and treatment. J Cosmet Laser Ther 6(4):181–185. https://doi.org/10.1080/14764170410003057

    Article  PubMed  Google Scholar 

  8. Sadick N (2018) Treatment for cellulite. Int J Womens Dermatol 5(1):68–72. https://doi.org/10.1016/j.ijwd.2018.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pérez Atamoros FM, Alcalá Pérez D, AszSigall D, Ávila Romay AA, Barba Gastelum JA et al (2018) Evidence-based treatment for gynoid lipodystrophy: A review of the recent literature. J Cosmet Dermatol 17(6):977–983. https://doi.org/10.1111/jocd.12555

    Article  PubMed  Google Scholar 

  10. Draelos ZD, Marenus KD (1997) Cellulite. Etiology and purported treatment Dermatol Surg 23(12):1177–1181

    CAS  PubMed  Google Scholar 

  11. Rawlings AV (2006) Cellulite and its treatment. Inter J Cosmet Sci 28(3):175–190. https://doi.org/10.1111/j.1467-2494.2006.00318.x

    Article  CAS  Google Scholar 

  12. Bauer J, Hoq MN, Mulcahy J, Tofail SAM, Gulshan F, Silien C, Podbielska H, Akbar MM (2020) Implementation of artificial intelligence and non-contact infrared thermography for prediction and personalized automatic identification of different stages of cellulite. EPMA J 7;11(1):17–29. https://doi.org/10.1007/s13167-020-00199-x

    Article  Google Scholar 

  13. Hexsel D, Weber MB, Taborda ML, Dal’Forno T, Zechmeister-Prado D (2011) A quality of life measurement for patients with cellulite. Surgic Cosmet Dermatol 3(2):96–10

    Google Scholar 

  14. Auh SL, Iyengar S, Weil A, Bolotin D, Cartee TV, Dover JS, Maher IA, Sobanko JF, Cohen JL, Poon E, Alam M (2018) Quantification of noninvasive fat reduction: A systematic review. Lasers Surg Med 50(2):96–110. https://doi.org/10.1002/lsm.22761

    Article  PubMed  Google Scholar 

  15. da Costa Santos CM, de MattosPimenta CA, Nobre MR (2007) The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem 15(3):508–511. https://doi.org/10.1590/s0104-11692007000300023

    Article  PubMed  Google Scholar 

  16. Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kmet LM, Lee RC, Cook LS (2004) Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. Alberta Heritage Foundation for Medical Research. https://doi.org/10.7939/R37M04F16

    Article  Google Scholar 

  18. Lee L, Packer TL, Tang SH, Girdler S (2008) Self-management education programs for age-related macular degeneration: a systematic review. Australas J Ageing 27(4):170–176. https://doi.org/10.1111/j.1741-6612.2008.00298.x

    Article  PubMed  Google Scholar 

  19. Alster TS, Tanzi EL (2005) Cellulite treatment using a novel combination radiofrequency, infrared light, and mechanical tissue manipulation device. J Cosmet Laser Ther 7(2):81–85. https://doi.org/10.1080/14764170500190242

    Article  PubMed  Google Scholar 

  20. Kulick M (2006) Evaluation of the combination of radio frequency, infrared energy and mechanical rollers with suction to improve skin surface irregularities (cellulite) in a limited treatment area. J Cosmet Laser Ther 8(4):185–190. https://doi.org/10.1080/14764170601009622

    Article  PubMed  Google Scholar 

  21. Nootheti PK, Magpantay A, Yosowitz G, Calderon S, Goldman MP (2006) A single center, randomized, comparative, prospective clinical study to determine the efficacy of the VelaSmooth system versus the Triactive system for the treatment of cellulite. Lasers Surg Med 38(10):908–912. https://doi.org/10.1002/lsm.20421

    Article  PubMed  Google Scholar 

  22. Wanitphakdeedecha R, Manuskiatti W (2006) Treatment of cellulite with a bipolar radiofrequency, infrared heat, and pulsatile suction device: a pilot study. J Cosmet Dermatol 5(4):284–288. https://doi.org/10.1111/j.1473-2165.2006.00271.x

    Article  PubMed  Google Scholar 

  23. Goldberg DJ, Fazeli A, Berlin AL (2008) Clinical, laboratory, and MRI analysis of cellulite treatment with a unipolar radiofrequency device. Dermatol Surg 34(2):204–9. https://doi.org/10.1111/j.1524-4725.2007.34038.x. discussion 209

    Article  CAS  PubMed  Google Scholar 

  24. Sadick N, Magro C (2007) A study evaluating the safety and efficacy of the VelaSmooth system in the treatment of cellulite. J Cosmet Laser Ther 9(1):15–20. https://doi.org/10.1080/14764170601134461

    Article  PubMed  Google Scholar 

  25. Alexiades-Armenakas M, Dover JS, Arndt KA (2008) Unipolar radiofrequency treatment to improve the appearance of cellulite. J Cosmet Laser Ther 10(3):148–153. https://doi.org/10.1080/14764170802279651

    Article  PubMed  Google Scholar 

  26. Kuhn C, Angehrn F, Sonnabend O, Voss A (2008) Impact of extracorporeal shock waves on the human skin with cellulite: a case study of an unique instance. Clin Interv Aging 3(1):201–210. https://doi.org/10.2147/cia.s2334

    Article  PubMed  PubMed Central  Google Scholar 

  27. Romero C, Caballero N, Herrero M, Ruíz R, Sadick NS, Trelles MA (2008) Effects of cellulite treatment with RF, IR light, mechanical massage and suction treating one buttock with the contralateral as a control. J Cosmet Laser Ther 10(4):193–201. https://doi.org/10.1080/14764170802524403

    Article  PubMed  Google Scholar 

  28. Bousquet-Rouaud R, Bazan M, Chaintreuil J, Echague A (2009) High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser. J Cosmet Laser Ther 11(1):34–44. https://doi.org/10.1080/14764170802612968

    Article  PubMed  Google Scholar 

  29. van der Lugt C, Romero C, Ancona D, Al-Zarouni M, Perera J, Trelles MA (2009) A multicenter study of cellulite treatment with a variable emission radio frequency system. Dermatol Ther 22(1):74–84. https://doi.org/10.1111/j.1529-8019.2008.01218.x

    Article  PubMed  Google Scholar 

  30. Manuskiatti W, Wachirakaphan C, Lektrakul N, Varothai S (2009) Circumference reduction and cellulite treatment with a TriPollar radiofrequency device: a pilot study. J Eur Acad Dermatol Venereol 23(7):820–827. https://doi.org/10.1111/j.1468-3083.2009.03254.x

    Article  CAS  PubMed  Google Scholar 

  31. Gold MH, Khatri KA, Hails K, Weiss RA, Fournier N (2011) Reduction in thigh circumference and improvement in the appearance of cellulite with dual-wavelength, low-level laser energy and massage. J Cosmet Laser Ther 13(1):13–20. https://doi.org/10.3109/14764172.2011.552608

    Article  PubMed  Google Scholar 

  32. Hexsel DM, Siega C, Schilling-Souza J, Porto MD, Rodrigues TC (2011) A bipolar radiofrequency, infrared, vacuum and mechanical massage device for treatment of cellulite: a pilot study. J Cosmet Laser Ther 13(6):297–302. https://doi.org/10.3109/14764172.2011.630086

    Article  PubMed  Google Scholar 

  33. Machado GC, Vieira RB, de Oliveira NML, Lopes CR (2011) Análise dos efeitos do ultrassom terapêutico e da eletrolipoforese nas alterações decorrentes do fibroedema geloide. Fisioter Mov 24(3):471–479

    Article  Google Scholar 

  34. Mlosek RK, Woźniak W, Malinowska S, Lewandowski M, Nowicki A (2012) The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound. J Eur Acad Dermatol Venereol 26(6):696–703. https://doi.org/10.1111/j.1468-3083.2011.04148.x

    Article  CAS  PubMed  Google Scholar 

  35. Chu SB, Calegari A (2012) Comparação dos efeitos da endermologia e da eletrolipoforese no tratemto do fibro edema gelóide. Fisioterapia Brasil 13(5):336–341. https://doi.org/10.33233/fb.v13i5.562

    Article  Google Scholar 

  36. Filippo A, Salomão A Jr (2012) Tratamento de gordura localizada e lipodistrofia ginóide com terapia combinada: radiofrequência multipolar, LED vermelho, endermologia pneumática e ultrassom cavitacional. Surg Cosmet Dermatol 4(3):241–246

    Google Scholar 

  37. Truitt A, Elkeeb L, Ortiz A, Saedi N, Echague A, Kelly KM (2012) Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite. J Cosmet Laser Ther 14(3):139–144. https://doi.org/10.3109/14764172.2012.685480

    Article  PubMed  Google Scholar 

  38. Valls MGC et al (2012) Análise dos efeitos da eletrolipólise no tratamento do fibro edema gelóide por meio da biofotogrametria computadorizada. Fisioterapia Brasil 13(1):54–58. https://doi.org/10.33233/fb.v13i1.464

    Article  Google Scholar 

  39. Bravo B, Issa M, Muniz RL, Torrado CM (2013) Treatment of gynoid lipodystrophy with unipolar radiofrequency: Clinical, laboratory, and ultrasonographic evaluation. Surg Cosmet Dermatol 5:138–144

    Google Scholar 

  40. Hexsel D, Siega C, Schilling-Souza J, De Oliveira DH (2013) Noninvasive treatment of cellulite utilizing an expedited treatment protocol with a dual wavelength laser-suction and massage device. J Cosmet Laser Ther 15(2):65–69. https://doi.org/10.3109/14764172.2012.759237

    Article  PubMed  Google Scholar 

  41. Jackson RF, Roche GC, Shanks SC (2013) A double-blind, placebo-controlled randomized trial evaluating the ability of low-level laser therapy to improve the appearance of cellulite. Lasers Surg Med 45(3):141–147. https://doi.org/10.1002/lsm.22119

    Article  PubMed  Google Scholar 

  42. Russe-Wilflingseder K, Russe E, Vester JC, Haller G, Novak P, Krotz A (2013) Placebo controlled, prospectively randomized, double-blinded study for the investigation of the effectiveness and safety of the acoustic wave therapy (AWT(®)) for cellulite treatment. J Cosmet Laser Ther 15(3):155–162. https://doi.org/10.3109/14764172.2012.759235Erratum.In:JCosmetLaserTher.2013Jun;15(3):162.Russe-Wilfingsleder,Katharina[correctedtoRusse-Wilflingseder,Katharina];Russe,Elisabeth[added]. PMID: 23688206

    Article  PubMed  Google Scholar 

  43. Valentim da Silva RM, Barichello PA, Medeiros ML, de Mendonça WC, Dantas JS, Ronzio OA, Froes PM, Galadari H (2013) Effect of capacitive radiofrequency on the fibrosis of patients with cellulite. Dermatol Res Pract 2013:715829. https://doi.org/10.1155/2013/715829

    Article  PubMed  PubMed Central  Google Scholar 

  44. De La Casa AM, Suarez Serrano C, Medrano Sánchez EM, Diaz Mohedo E, Chamorro Moriana G, Rebollo Salas M (2014) The efficacy of capacitive radio-frequency diathermy in reducing buttock and posterior thigh cellulite measured through the cellulite severity scale. J Cosmet Laser Ther 16(5):214–224. https://doi.org/10.3109/14764172.2014.949272

    Article  Google Scholar 

  45. Schlaudraff KU, Kiessling MC, Császár NB, Schmitz C (2014) Predictability of the individual clinical outcome of extracorporeal shock wave therapy for cellulite. Clin Cosmet Investig Dermatol 7:171–183. https://doi.org/10.2147/CCID.S59851

    Article  PubMed  PubMed Central  Google Scholar 

  46. Albornoz-Cabello M, Ibáñez-Vera AJ, De la Cruz-Torres B (2017) Efficacy of monopolar dielectric transmission radio frequency in panniculus adiposus and cellulite reduction. J Cosmet Laser Ther 19(7):422–426. https://doi.org/10.1080/14764172.2017.1342041

    Article  PubMed  Google Scholar 

  47. Wanitphakdeedecha R, Sathaworawong A, Manuskiatti W, Sadick NS (2017) Efficacy of multipolar radiofrequency with pulsed magnetic field therapy for the treatment of abdominal cellulite. J Cosmet Laser Ther 19(4):205–209. https://doi.org/10.1080/14764172.2017.1279332

    Article  PubMed  Google Scholar 

  48. Fritz K, Salavastru C, Gyurova M (2018) Clinical evaluation of simultaneously applied monopolar radiofrequency and targeted pressure energy as a new method for noninvasive treatment of cellulite in postpubertal women. J Cosmet Dermatol 17(3):361–364. https://doi.org/10.1111/jocd.12525

    Article  PubMed  Google Scholar 

  49. Modena D, Silva CN, Delinocente TCP (2019) Araújo TB (2019) Effectiveness of the Electromagnetic Shock Wave Therapy in the Treatment of Cellulite. Dermatol Res Pract 1:1–6. https://doi.org/10.1155/2019/8246815

    Article  Google Scholar 

  50. Maia R, Silva R, Alvarez C, Froes P, Vasconcelos L, Silva J, Ventura A, Carreiro E (2020) Comparison between shock wave therapy and mechanical massage for the treatment of cellulite in women. Physiot Quart 28:36–41. https://doi.org/10.5114/pq.2020.96234

    Article  Google Scholar 

  51. Young VL, DiBernardo BE (2021) Comparison of Cellulite Severity Scales and Imaging Methods. Aesthet Surg J 41(6):NP521–NP537. https://doi.org/10.1093/asj/sjaa226

    Article  PubMed  Google Scholar 

  52. Lopes-Martins RAB, Barbaroto DP, Da Silva BE, Leonardo PS, Ruiz-Silva C, Arisawa EALS (2022) Infrared thermography as valuable tool for gynoid lipodystrophy (cellulite) diagnosis. Lasers Med Sci 37(6):2639–2644. https://doi.org/10.1007/s10103-022-03530-2

    Article  PubMed  Google Scholar 

  53. Hariton E, Locascio JJ (2018) Randomised controlled trials - the gold standard for effectiveness research: Study design: randomised controlled trials. BJOG 125(13):1716. https://doi.org/10.1111/1471-0528.15199

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adatto M, Adatto-Neilson R, Servant JJ, Vester J, Novak P, Krotz A (2010) Controlled, randomized study evaluating the effects of treating cellulite with AWT/EPAT. J Cosmet Laser Ther 12(4):176–182. https://doi.org/10.3109/14764172.2010.500392

    Article  PubMed  Google Scholar 

  55. Russe-Wilflingseder K, Russe E (2010) Acoustic wave treatment for cellulite - A new approach. AIP Conf Proc 1226(1):25–30. https://doi.org/10.1063/1.3453782

    Article  Google Scholar 

  56. Hoppe DJ, Schemitsch EH, Morshed S, Tornetta P 3rd, Bhandari M (2009) Hierarchy of evidence: where observational studies fit in and why we need them. J Bone Joint Surg Am 91(Suppl 3):2–9. https://doi.org/10.2106/JBJS.H.01571

    Article  PubMed  Google Scholar 

  57. Clark L, Schmidt U, Tharmanathan P, Adamson J, Hewitt C, Torgerson D (2013) Poor reporting quality of key Randomization and Allocation Concealment details is still prevalent among published RCTs in 2011: a review. J Eval Clin Pract 19(4):703–707. https://doi.org/10.1111/jep.12031

    Article  PubMed  Google Scholar 

Download references

Funding

Prof. Rodrigo Lopes-Martins was supported by the—CNPq.

Author information

Authors and Affiliations

Authors

Contributions

Claudia Longano – Writing and scientific search; Carly de Faria Coelho – Search strategy and design. Sandra Alencar Buslik, Cicelina Voguel, Camila Katsuragi, Patrícia Sardinha Leonardo – Analysis and selection of studies. Rodrigo Alvaro B. Lopes Martins – General supervision and coordenation of the study.

Corresponding author

Correspondence to Rodrigo Álvaro Brandão Lopes-Martins.

Ethics declarations

Competing Interest

The authors declare no conflit of interest for this publication.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longano, C., de Faria Coelho, C., Buslik, S.A. et al. Does electrophysical agents work for cellulite treatment? a systematic review of clinical trials. Lasers Med Sci 39, 120 (2024). https://doi.org/10.1007/s10103-024-04068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04068-1

Keywords

Navigation