Skip to main content

Advertisement

Log in

Effects of photobiomodulation by low-power lasers and LEDs on the viability, migration, and invasion of breast cancer cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Among the malignant tumors, breast cancer is the most commonly diagnosed worldwide, being the most prevalent in women. Photobiomodulation has been used for wound healing, swelling and pain reduction, and muscle repair. The application of photobiomodulation in cancer patients has been controversial. Therefore, a better understanding of radiation-induced effects involved in photobiomodulation on cancer cells is needed. Thus, this study aimed to investigate the effects of exposure to low-power lasers and LEDs on cell viability, migration, and invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (23, 46, and 69 J/cm2, 0.77 W/cm2) and blue LED (160, 321, and 482 J/cm2, 5.35 W/cm2), alone or in combination. Cell viability was assessed using the WST-1 assay, cell migration was evaluated using the wound healing assay, and cell invasion was performed using the Matrigel transwell assay. Viability and migration were not altered in MCF-7 and MDA-MB-231 cultures after exposure to low-power red laser and blue LED. However, there was a decrease in cell invasion from the cultures of the two cell lines evaluated. The results suggest that photobiomodulation induced by low-power red laser and blue LED does not alter cell viability and migration but decreases cell invasion in human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deo SVS, Sharma J, Kumar S (2020) Report on global cancer burden: challenges and opportunities for surgical oncologists. Ann Surg Oncol 29(11):6497–6500

    Google Scholar 

  2. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23

    PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  5. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46

    CAS  PubMed  Google Scholar 

  6. Karakaş D, Ari F, Ulukaya E (2017) The MTT viability assay yields strikingly false positive viabilities although the cells are killed by some plant extracts. Turk J Biol 41(6):919–925

    PubMed  PubMed Central  Google Scholar 

  7. Nozhat Z, Khalaji MS, Hedayati M, Kia SK (2022) Different methods for cell viability and proliferation assay: essential tools in pharmaceutical studies. Anticancer Agents Med Chem 22(4):703–712

    CAS  PubMed  Google Scholar 

  8. Lema C, Varela-Ramirez A, Aguilera RJ (2011) Differential nuclear staining assay for high throughput screening to identify cytotoxic compounds. Curr Cell Biochem 1(1):1–14

    PubMed  PubMed Central  Google Scholar 

  9. Adan A, Kiraz Y, Baran Y (2016) Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol 17(14):1213–1221

    CAS  PubMed  Google Scholar 

  10. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    CAS  PubMed  Google Scholar 

  11. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154

    CAS  PubMed  Google Scholar 

  12. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Quirk BJ, Whelan HT (2020) What lies at the heart of photobiomodulation: light, cytochrome C oxidase, and nitric oxide-review of the evidence. Photobiomodul Photomed Laser Surg 38(9):527–530

    PubMed  PubMed Central  Google Scholar 

  14. Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY (2020) Review on the cellular mechanisms of low-level laser therapy use in oncology. Front Oncol 10:1255

    PubMed  PubMed Central  Google Scholar 

  15. Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A, Bruska M, Dominiak M, Mozdziak P, Skiba THI, Shibli JA, Angelova Volponi A, Kempisty B, Dyszkiewicz-Konwińska M (2020) Photobiomodulation-underlying mechanism and clinical applications. J Clin Med 9(6):1724

    PubMed  PubMed Central  Google Scholar 

  16. Chen Z, Huang S, Liu M (2022) The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells. Photodermatol Photoimmunol Photomed 38(1):3–11

    PubMed  Google Scholar 

  17. Leyane TS, Jere SW, Houreld NN (2021) Cellular signalling and photobiomodulation in chronic wound repair. Int J Mol Sci 22(20):11223

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferraresi C, Huang YY, Hamblin MR (2016) Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics 9(11–12):1273–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de Pauli PM, Araújo ALD, Arboleda LPA, Palmier NR, Fonsêca JM, Gomes-Silva W, Madrid-Troconis CC, Silveira FM, Martins MD, Faria KM, Ribeiro ACP, Brandão TB, Lopes MA, Leme AFP, Migliorati CA, Santos-Silva AR (2019) Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review Oral Oncol 93:21–28

    Google Scholar 

  21. Bamps M, Dok R, Nuyts S (2018) Low-level laser therapy stimulates proliferation in head and neck squamous cell carcinoma cells. Front Oncol 28(8):343

    Google Scholar 

  22. Brandão TB, Morais-Faria K, Ribeiro ACP, Rivera C, Salvajoli JV, Lopes MA, Epstein JB, Arany PR, de Castro G, Migliorati CA, Santos-Silva AR (2018) Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses. Support Care Cancer 26(7):2417–2423

    PubMed  Google Scholar 

  23. Arora H, Pai KM, Maiya A, Vidyasagar MS, Rajeev A (2008) Efficacy of He-Ne laser in the prevention and treatment of radiotherapy-induced oral mucositis in oral cancer patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(2):180–186

    PubMed  Google Scholar 

  24. Vitale MC, Modaffari C, Decembrino N, Zhou FX, Zecca M, Defabianis P (2017) Preliminary study in a new protocol for the treatment of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation (HSCT) and chemotherapy (CT). Lasers Med Sci 32(6):1423–1428

    PubMed  Google Scholar 

  25. Kara C, Selamet H, Gökmenoğlu C, Kara N (2018) Low level laser therapy induces increased viability and proliferation in isolated cancer cells. Cell Prolif 51(2):12417

    Google Scholar 

  26. Rhee YH, Moon JH, Choi SH, Ahn JC (2016) Low-level laser therapy promoted aggressive proliferation and angiogenesis through decreasing of transforming growth factor-β1 and increasing of Akt/hypoxia inducible factor-1α in anaplastic thyroid cancer. Photomed Laser Surg 34(6):229–235

    CAS  PubMed  Google Scholar 

  27. Canuto KS, Amorim ISS, Rodrigues JA, Teixeira AF, Mencalha AL, Fonseca AS (2021) Effects of photobiomodulation by low power lasers on the in vitro proliferation and aggressiveness of breast cancer cells. Laser Phys 31(8):5603

    Google Scholar 

  28. Frigo L, Luppi JS, Favero GM, Maria DA, Penna SC, Bjordal JM, Bensadoun RJ, Lopes-Martins RA (2009) The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo. BMC Cancer 9:404

    PubMed  PubMed Central  Google Scholar 

  29. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R (2020) Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int 20:18

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Teixeira AF, Alves JR, de Souza da Fonseca A, Mencalha AL, (2018) Low power blue LED exposure increases effects of doxorubicin on MDA-MB-231 breast cancer cells. Photodiagnosis Photodyn Ther 24:250–255

    CAS  PubMed  Google Scholar 

  31. Powell K, Low P, McDonnell PA, Laakso EL, Ralph SJ (2010) The effect of laser irradiation on proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells. Photomed Laser Surg 28(1):115–123

    PubMed  Google Scholar 

  32. Gomes Henriques AC, Ginani F, Oliveira RM, Keesen TSL, Galvao Barboza CA, Oliveira Rocha HA, De Castro JFL, Della Coletta R (2014) de Almeida Freitas. Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells Lasers Med Sci 29:1385–1395

    PubMed  Google Scholar 

  33. Marchesini R, Dasdia T, Melloni E, Rocca E (1989) Effect of low-energy laser irradiation on colony formation capability in different human tumor cells in vitro. Lasers Surg Med 9(1):59–62

    CAS  PubMed  Google Scholar 

  34. Ramos Silva C, Cabral FV, de Camargo CF, Núñez SC, Mateus Yoshimura T, de Lima Luna AC, Maria DA, Ribeiro MS (2016) Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics 9(11–12):1157–1166

    CAS  PubMed  Google Scholar 

  35. Xia Y, Yu W, Cheng F, Rao T, Ruan Y, Yuan R, Ning J, Zhou X, Lin F, Zheng D (2021) Photobiomodulation with blue laser inhibits bladder cancer progression. Front Oncol 11:701122

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ibarra AMC, Garcia MP, Ferreira M, de Fátima Teixeira da Silva D, Pavani C, Mesquita-Ferrari RA, Fernandes KPS, Nunes FD, Rodrigues MFSD (2021) Effects of photobiomodulation on cellular viability and cancer stem cell phenotype in oral squamous cell carcinoma. Lasers Med Sci 36(3):681–690

    PubMed  Google Scholar 

  37. Shakibaie M, Vaezjalali M, Rafii-Tabar H, Sasanpour P (2020) Phototherapy alters the oncogenic metabolic activity of breast cancer cells. Photodiagnosis Photodyn Ther 30:101695

    CAS  PubMed  Google Scholar 

  38. Cialdai F, Landini I, Capaccioli S, Nobili S, Mini E, Lulli M, Monici M (2015) In vitro study on the safety of near infrared laser therapy in its potential application as postmastectomy lymphedema treatment. J Photochem Photobiol B 151:285–296

    CAS  PubMed  Google Scholar 

  39. Bensadoun RJ, Epstein JB, Nair RG, Barasch A, Raber-Durlacher JE, Migliorati C, Genot-Klastersky MT, Treister N, Arany P, Lodewijckx J, Robijns J (2020) Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med 9(22):8279–8300

    PubMed  PubMed Central  Google Scholar 

  40. Shakibaie M, Vaezjalali M, Rafii-Tabar H, Sasanpour P (2020) Phototherapy alters the oncogenic metabolic activity of the breast cancer cells. Photodiagnosis Photodyn Ther 30:101695

    CAS  PubMed  Google Scholar 

  41. Magrini TD, dos Santos NV, Milazzotto MP, Cerchiaro G, da Silva MH (2012) Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study. J Biomed 17(10):101516

    Google Scholar 

  42. da Fonseca AS (2019) Is there a measure for low power laser dose? Lasers Med Sci 34(1):223–234

    PubMed  Google Scholar 

  43. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9(4):602–618

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Castro JLF et al (2015) The effect of laser therapy on the proliferation of oral KB carcinoma cells. Photomed and Las Surger 23(6):586–589

    Google Scholar 

  45. Gupta C, Tikoo K (2013) High glucose and insulin differentially modulates proliferation in MCF-7 and MDA-MB-231 cells. J Mol Endocrinol 51(1):119–129

    CAS  PubMed  Google Scholar 

  46. Dias K, Dvorkin-Gheva A, Hallett RM, Wu Y, Hassell J, Pond GR, Levine M, Whelan T, Bane AL (2017) Claudin-low breast cancer: clinical & pathological characteristics. PLoS One 12(1):0168669

    Google Scholar 

  47. Schalch TD, Fernandes MH, Destro Rodrigues MFS, Guimarães DM, Nunes FD, Rodrigues JC, Garcia MP, Mesquita Ferrari RA, Bussadori SK, Fernandes KPS (2019) Photobiomodulation is associated with a decrease in cell viability and migration in oral squamous cell carcinoma. Lasers Med Sci 34(3):629–636

    PubMed  Google Scholar 

  48. Oh PS, Kim HS, Kim EM, Hwang H, Ryu HH, Lim S, Sohn MH, Jeong HJ (2017) Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. J Cell Physiol 232(12):3444–3453

    CAS  PubMed  Google Scholar 

  49. Elbanna A, Atta D, Sherief DI (2022) In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement. Dent Res J 19:1

    Google Scholar 

  50. Atta D, Ahmedc S, Abdelbard M (2022) Raman micro-spectroscopic investigation of corrosion products. J Egypt Chem 65(13):1333–1345

    Google Scholar 

Download references

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Thayssa Gomes da Silva performed cellular biologic experiments and data analysis; Juliana Alves Rodrigues, Priscyanne Barreto Siqueira, and Márcia dos Santos Soares contributed to the cellular biologic experiments; Andre Luiz Mencalha contributed to the biological part of the manuscript, with input from all authors; Adenilson de Souza Fonseca conceived the original idea of the project; supervised the cellular biological experiments of this work and data analysis; and contributed to writing the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Thayssa Gomes da Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, T.G., Rodrigues, J.A., Siqueira, P.B. et al. Effects of photobiomodulation by low-power lasers and LEDs on the viability, migration, and invasion of breast cancer cells. Lasers Med Sci 38, 191 (2023). https://doi.org/10.1007/s10103-023-03858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03858-3

Keywords

Navigation