Skip to main content
Log in

A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Glioma is the most common primary central nervous system tumor; many methods are currently being used to research and treat glioma. In recent years, fluorescent-guided resection (FGR) and photodynamic therapy (PDT) have become hot spots in the treatment of glioma. Based on the existing literatures regarding the FGR enhancing resection rate and regarding efficacy of PDT for the treatment of glioma, this paper made a systematic review of FGR for gross total resection of patients and the PDT for the survival of patients with glioma. Meta-analysis of eligible studies was performed to derive precise estimation of PDT on the prognosis of patients with glioma by searching all related literatures in PubMed, EMBASE, Cochrane, and Web of Science databases, and further to evaluate (GTR) under FGR and the efficacy of PDT therapy, including 1-year and 2-year survival rates, overall survival (OS), and progression-free survival (PFS). According to the inclusion and exclusion criteria, a total of 1294 patients with glioma were included in the final analysis of 31 articles, among which a 73.00% (95% CI, 68.00 ~ 79.00%, P < 0.01) rate of GTR in 27 groups included in 23 articles was reported for those receiving FGR. The OS was 17.78 months (95% CI, 8.89 ~ 26.67, P < 0.01) in 5 articles on PDT-treated patients with glioma, and the mean difference of OS was 6.18 (95% CI, 3.3 ~ 9.06, P < 0.01) between PDT treatment and conventional glioma surgery, showing a statistically significant difference (P < 0.01). The PFS was 10.82 months (95% CI, 7.04 ~ 14.61, P < 0.01) in 5 articles on PDT-treated patients with glioma. A 1-year survival rate of 59.00% (95% CI, 38.00 ~ 77.00%, P < 0.01) in 10 groups included in 8 articles and 2-year survival rate of 25.00% (95% CI, 15.00 ~ 36.00%, P < 0.01) in 7 groups included in 6 articles were reported for those with PDT. FGR and PDT are feasible for treatment of patients with glioma, because FGR can effectively increase the resection rate, at the same time, PDT can prolong the survival time. However, due to the limitation of small sample size in the existing studies, larger samples and randomized controlled clinical trials are needed to analyze the resection under FGR and efficacy of PDT in patients with glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stupp R, Roila F (2009) Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(Suppl 4):126–128

    Article  PubMed  Google Scholar 

  2. Reifenberger G, Wirsching HG, Knobbe-Thomsen CB et al (2017) Advances in the molecular genetics of —implications for classification and therapy. Nat Rev Clin Oncol 14(7):434–452

    Article  CAS  PubMed  Google Scholar 

  3. Shergalis A, Bankhead A 3rd, Luesakul U et al (2018) Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 70(3):412–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haj A, Doenitz C, Schebesch KM et al (2017) Extent of resection in newly diagnosed glioblastoma: impact of a specialized neuro-oncology care center. Brain Sci 8(1):5

    Article  PubMed Central  Google Scholar 

  5. Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  PubMed  Google Scholar 

  6. Hu L, Lv QL, Chen SH et al (2016) Up-regulation of long non-coding RNA AB073614 predicts a poor prognosis in patients with glioma. Int J Environ Res Public Health 13(4):433

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  8. Obwegeser A, Ortler M, Seiwald M et al (1995) Therapy of glioblastoma multiforme: a cumulative experience of 10 years. Acta Neurochir (Wien) 137(1–2):29–33

    Article  CAS  Google Scholar 

  9. Mitton D, Ackroyd R (2008) A brief overview of photodynamic therapy in Europe. Photodiagnosis Photodyn Ther 5(2):103–111

    Article  CAS  PubMed  Google Scholar 

  10. Pichlmeier U, Bink A, Schackert G et al (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10(6):1025–1034

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2(11):1460–1469

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  PubMed  Google Scholar 

  13. Juarranz Á, Gilaberte Y, González S (2020) Photodynamic therapy (PDT) in oncology. Cancers (Basel) 12(11):3341

    Article  Google Scholar 

  14. McGirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110(1):156–162

    Article  PubMed  Google Scholar 

  15. Kostron H, Obwegeser A, Jakober R (1996) Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B 36(2):157–168

    Article  CAS  PubMed  Google Scholar 

  16. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1(4):279–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seshadri M, Bellnier DA, Vaughan LA et al (2008) Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin Cancer Res 14(9):2796–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Angell-Petersen E, Spetalen S, Madsen SJ et al (2006) Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. J Neurosurg 104(1):109–117

    Article  PubMed  Google Scholar 

  19. Muller PJ, Wilson BC (2006) Photodynamic therapy of brain tumors—a work in progress. Lasers Surg Med 38(5):384–389

    Article  PubMed  Google Scholar 

  20. Mazurek M, Kulesza B, Stoma F et al (2020) Characteristics of fluorescent intraoperative dyes helpful in gross total resection of high-grade gliomas—a systematic review. Diagnostics (Basel) 10(12):1100

    Article  CAS  Google Scholar 

  21. Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis Photodyn Ther 7(2):76–85

    Article  CAS  PubMed  Google Scholar 

  22. Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013

    Article  CAS  PubMed  Google Scholar 

  23. Kostron H, Fiegele T, Akatuna E (2006) Combination of FOSCAN® mediated fluorescence guided resection and photodynamic treatment as new therapeutic concept for malignant brain tumors. Med Laser Appl 21(4):285–290

    Article  Google Scholar 

  24. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  CAS  PubMed  Google Scholar 

  25. Beck TJ, Kreth FW, Beyer W et al (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39(5):386–393

    Article  PubMed  Google Scholar 

  26. Nabavi A, Thurm H, Zountsas B et al (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65(6):1070–1076 (discussion 1076 1077)

    Article  PubMed  Google Scholar 

  27. Feigl GC, Ritz R, Moraes M et al (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357

    Article  PubMed  Google Scholar 

  28. Díez Valle R, Tejada Solis S, Idoate Gastearena MA et al (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102(1):105–113

    Article  PubMed  Google Scholar 

  29. Idoate MA, Díez Valle R, Echeveste J et al (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31(6):575–582

    Article  PubMed  Google Scholar 

  30. Tsugu A, Ishizaka H, Mizokami Y et al (2011) Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg 76(1–2):120–127

    Article  PubMed  Google Scholar 

  31. Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99

    Article  CAS  PubMed  Google Scholar 

  32. Cortnum S, Laursen RJ (2012) Fluorescence-guided resection of gliomas. Dan Med J 59(8):A4460

    PubMed  Google Scholar 

  33. Eyüpoglu IY, Hore N, Savaskan NE et al (2012) Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One 7(9):e44885

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roessler K, Becherer A, Donat M et al (2012) Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ALA) is more sensitive than contrast MRI or amino acid positron emission tomography ((18)F-FET PET) in glioblastoma surgery. Neurol Res 34(3):314–317

    Article  CAS  PubMed  Google Scholar 

  35. Schucht P, Beck J, Abu-Isa J et al (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71(5):927–935 (discussion 935 926)

    Article  PubMed  Google Scholar 

  36. Tejada-Solís S, Aldave-Orzaiz G, Pay-Valverde E et al (2012) Prognostic value of ventricular wall fluorescence during 5-aminolevulinic-guided surgery for glioblastoma. Acta Neurochir (Wien) 154(11):1997–2002 (discussion 2002)

    Article  Google Scholar 

  37. Della Puppa A, Ciccarino P, Lombardi G et al (2014) 5-Aminolevulinic acid fluorescence in high grade glioma surgery surgical outcome, intraoperative findings, and fluorescence patterns. Biomed Res Int 2014:232561

    PubMed  Google Scholar 

  38. Piquer J, Llácer JL, Rovira V et al (2014) Fluorescence-guided surgery and biopsy in gliomas with an exoscope system. Biomed Res Int 2014:207974

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coburger J, Hagel V, Wirtz CR et al (2015) Surgery for glioblastoma: impact of the combined use of 5-aminolevulinic acid and intraoperative MRI on extent of resection and survival. PLoS One 10(6):e0131872

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schatlo B, Fandino J, Smoll NR et al (2015) Outcomes after combined use of intraoperative MRI and 5-aminolevulinic acid in high-grade glioma surgery. Neuro Oncol 17(12):1560–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Della Puppa A, Lombardi G, Rossetto M et al (2017) Outcome of patients affected by newly diagnosed glioblastoma undergoing surgery assisted by 5-aminolevulinic acid guided resection followed by BCNU wafers implantation: a 3-year follow-up. J Neurooncol 131(2):331–340

    Article  CAS  PubMed  Google Scholar 

  42. Chan DTM, Yi-Pin Sonia H, Poon WS (2018) 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J Surg 41(5):467–472

    Article  PubMed  Google Scholar 

  43. Akimoto J, Fukami S, Ichikawa M et al (2019) Intraoperative photodiagnosis for malignant glioma using photosensitizer talaporfin sodium. Front Surg 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schipmann S, Müther M, Stögbauer L et al (2020) Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 24(1):11

    Google Scholar 

  45. Rosenthal MA, Kavar B, Uren S et al (2003) Promising survival in patients with high-grade gliomas following therapy with a novel boronated porphyrin. J Clin Neurosci 10(4):425–427

    Article  CAS  PubMed  Google Scholar 

  46. Eljamel MS, Goodman C, Moseley H (2008) ALA and photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23(4):361–367

    Article  PubMed  Google Scholar 

  47. Muragaki Y, Akimoto J, Maruyama T et al (2013) Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 119(4):845–852

    Article  CAS  PubMed  Google Scholar 

  48. Nitta M, Muragaki Y, Maruyama T et al (2018) Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnosed glioblastoma. J Neurosurg 7(1):8

    Google Scholar 

  49. Muller PJ, Wilson BC (1995) Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol 11(5):346–354

    Article  CAS  PubMed  Google Scholar 

  50. Muller PJ, Wilson BC (1996) Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 14(5):263–270

    Article  CAS  PubMed  Google Scholar 

  51. Stylli SS, Kaye AH, MacGregor L et al (2005) Photodynamic therapy of high grade glioma—long term survival. J Clin Neurosci 12(4):389–398

    Article  CAS  PubMed  Google Scholar 

  52. Gandhi S, TayebiMeybodi A, Belykh E et al (2019) Survival outcomes among patients with high-grade glioma treated with 5-aminolevulinic acid-guided surgery: a systematic review and meta-analysis. Front Oncol 9:620

    Article  PubMed  PubMed Central  Google Scholar 

  53. Quirk BJ, Brandal G, Donlon S et al (2015) Photodynamic therapy (PDT) for malignant brain tumors—where do we stand? Photodiagnosis Photodyn Ther 12(3):530–544

    Article  PubMed  Google Scholar 

  54. Kaneko S, Fujimoto S, Yamaguchi H et al (2018) Photodynamic therapy of malignant gliomas. Prog Neurol Surg 32(1):13

    Google Scholar 

  55. Jain KKA (2018) critical overview of targeted therapies for glioblastoma. Front Oncol 8:419

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scott JN, Rewcastle NB, Brasher PM et al (1998) Long-term glioblastoma multiforme survivors: a population-based study. Can J Neurol Sci 25(3):197–201

    Article  CAS  PubMed  Google Scholar 

  57. Figge FH, Weiland GS, Manganiello LO (1948) Cancer detection and therapy; affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med 68(3):640

    Article  CAS  PubMed  Google Scholar 

  58. Rassmussen-Taxdal DS, Ward GE, Figge FH (1955) Fluorescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin. Cancer 8(1):78–81

    Article  CAS  PubMed  Google Scholar 

  59. Yang J, Shi Z, Liu R et al (2020) Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics 10(7):3223–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kessel D (2019) Photodynamic therapy: a brief history. J Clin Med 8(10):1581

    Article  CAS  PubMed Central  Google Scholar 

  61. Lieberman FS, Wang M, Robins HI et al (2019) Phase 2 study of radiation therapy plus low-dose temozolomide followed by temozolomide and irinotecan for glioblastoma: NRG Oncology RTOG Trial 0420. Int J Radiat Oncol Biol Phys 103(4):878–886

    Article  PubMed  Google Scholar 

  62. Bruhn H, Strandéus M, Milos P et al (2018) Improved survival of Swedish glioblastoma patients treated according to Stupp. Acta Neurol Scand 138(4):332–337

    Article  CAS  PubMed  Google Scholar 

  63. Warren KT, Liu L, Liu Y et al (2019) The impact of timing of concurrent chemoradiation in patients with high-grade glioma in the era of the Stupp protocol. Front Oncol 9:186

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The role of the funding source for this study was used for project design, purchase of software, remuneration of researchers, publication, and academic exchanges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wen.

Ethics declarations

Ethical approval and consent to participate

Although this is a retrospective review literature, ethical approval is exempted, but we strictly follow ethical standards. This study was exempt from institutional review board approval as it was a meta-analytical review of literature.

Informed consent

This study is a review of the literature and does not require informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Wen, J., Mo, Y. et al. A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med Sci 37, 789–797 (2022). https://doi.org/10.1007/s10103-021-03426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03426-7

Keywords

Navigation