Skip to main content
Log in

Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The development of anxiety and depression due to chronic exposure to noise stress has remained as an unsolved health problem so far. Despite the studies suggesting the neuroenhancement effects of transcranial photobiomodulation (tPBM) and housing in an enriched environment (EE), the combined effects of these treatments have not been elucidated yet. Also, there is no available data on the relationship between the application of tPBM and hippocampal brain-derived neurotrophic factor (BDNF) expression in animal models of stress. The present study aims to investigate the application of the tPBM and EE (alone or in combination) on depressive- and anxiety-like behaviors in a mice model of noise stress. Mice were divided into five groups: control, noise, noise + EE, noise + tPBM, and noise + EE + tPBM. Except for the control group, other groups were subjected to 110 dB SPL white noise for 4 h/day for 14 consecutive days and received their respective treatments. Forced Swimming Test (FST) was used to evaluate depressive-like behaviors. Elevated Plus Maze (EPM) and Open Field Test (OFT) were used to evaluate anxiety-like behaviors. BDNF, tyrosine receptor kinase B (TrkB), and cAMP response element-binding (CREB) protein levels in the hippocampus were determined by the Western blot method, and also serum corticosterone levels were assessed using an ELISA kit. Exposure to noise stress significantly elevated serum corticosterone level; downregulated hippocampal BDNF, TrkB, and CREB protein expressions; and resulted in depressive- and anxiety-like behaviors. While, the application of tPBM (810 nm wavelength, 8 J/cm2 fluence, 10 Hz pulsed wave mode), housing in EE, and their combination lowered corticosterone levels, upregulated the BDNF/TrkB/CREB signaling pathway in the hippocampus, and improved behavioral outcomes in noise stress subjected mice. Our finding revealed the improving effects of tPBM and EE on depressive and anxiety-like behaviors induced by noise stress, possibly by augmenting the BDNF/TrkB/CREB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Ising H, Kruppa B (2004) Health effects caused by noise: evidence in the literature from the past 25 years. Noise Health 6(22):5

    CAS  PubMed  Google Scholar 

  2. Ravindran R et al (2005) Noise-stress-induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J Pharmacol Sci 98(4):354–360. https://doi.org/10.1254/jphs.fp0050127

    Article  CAS  PubMed  Google Scholar 

  3. Tao S et al (2015) Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age. J Otol 10(1):21–28. https://doi.org/10.1016/j.joto.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abbate C et al (2005) Influence of environmental factors on the evolution of industrial noise-induced hearing loss. Environ Monit Assess 107(1–3):351–361. https://doi.org/10.1007/s10661-005-3107-1

    Article  PubMed  Google Scholar 

  5. Hume KI, Brink M, Basner M (2012) Effects of environmental noise on sleep. Noise Health 14(61):297. https://doi.org/10.4103/1463-1741.104897

    Article  PubMed  Google Scholar 

  6. Beutel ME et al (2016) Noise annoyance is associated with depression and anxiety in the general population- the contribution of aircraft noise. PLoS One 11(5):e0155357. https://doi.org/10.1371/journal.pone.0155357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whirledge S, Cidlowski JA (2017) Glucocorticoids and reproduction: traffic control on the road to reproduction. Trends Endocrinol Metab 28(6):399–415. https://doi.org/10.1016/j.tem.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60(2):236–248. https://doi.org/10.1002/neu.20025

    Article  PubMed  Google Scholar 

  9. Liu R-J, Aghajanian GK (2008) Stress blunts serotonin-and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 105(1):359–364. https://doi.org/10.1073/pnas.0706679105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morais M et al (2014) The effects of chronic stress on hippocampal adult neurogenesis and dendritic plasticity are reversed by selective MAO-A inhibition. J Psychopharmacol 28(12):1178–1183. https://doi.org/10.1177/0269881114553646

    Article  CAS  PubMed  Google Scholar 

  11. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. https://doi.org/10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schoenfeld TJ et al (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923. https://doi.org/10.1016/j.biopsych.2017.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nasrolahi A et al (2018) Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel? Rev Neurosci 29(5):475–489. https://doi.org/10.1515/revneuro-2017-0040

    Article  CAS  PubMed  Google Scholar 

  14. Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7(1):e30481. https://doi.org/10.1371/journal.pone.0030481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988. https://doi.org/10.1161/01.STR.0000131808.69640.b7

    Article  PubMed  Google Scholar 

  16. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salehpour F et al (2018) Brain photobiomodulation therapy: a narrative review. Mol Neurobiol 55(8):6601–6636. https://doi.org/10.1007/s12035-017-0852-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heo J-C et al (2019) Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-46490-4

    Article  CAS  Google Scholar 

  19. Mohammed HS (2016) Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci 31(8):1651–1656. https://doi.org/10.1007/s10103-016-2033-5

    Article  PubMed  Google Scholar 

  20. Salehpour F et al (2017) A comparison between antidepressant effects of transcranial near-infrared laser and citalopram in a rat model of depression. In: Clin Transl Neurophotonics. International Society for Optics and Photonics. https://doi.org/10.1117/12.2251598

  21. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33(33):13505–13517. https://doi.org/10.1523/JNEUROSCI.0918-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenzweig MR et al (1978) Social grouping cannot account for cerebral effects of enriched environments. Brain Res 153(3):563–576. https://doi.org/10.1016/0006-8993(78)90340-2

    Article  CAS  PubMed  Google Scholar 

  23. Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55(1):78–88. https://doi.org/10.1016/j.brainresrev.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  24. Garthe A, Roeder I, Kempermann G (2016) Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus 26(2):261–271. https://doi.org/10.1002/hipo.22520

    Article  PubMed  Google Scholar 

  25. Leggio MG et al (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163(1):78–90. https://doi.org/10.1016/j.bbr.2005.04.009

    Article  PubMed  Google Scholar 

  26. Rampon C et al (2000) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A 97(23):12880–12884. https://doi.org/10.1073/pnas.97.23.12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novaes LS et al (2017) Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. Neuropharmacology 113:457–466. https://doi.org/10.1016/j.neuropharm.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  28. Jha S et al (2016) Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV. Transl Psychiatry 6(9):e896–e896. https://doi.org/10.1038/tp.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meynaghizadeh-Zargar R et al (2020) Effects of transcranial photobiomodulation and methylene blue on biochemical and behavioral profiles in mice stress model. Lasers Med Sci 35(3):573–84. https://doi.org/10.1007/s10103-019-02851-z

  30. Salehpour F et al (2019) Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 144:213–222. https://doi.org/10.1016/j.brainresbull.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  31. de Souza LG et al (2018) Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci 33(6):1341–1349. https://doi.org/10.1007/s10103-018-2494-9

    Article  PubMed  Google Scholar 

  32. Hwang J, Castelli DM, Gonzalez-Lima F (2016) Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med Sci 31(6):1151–1160. https://doi.org/10.1007/s10103-016-1962-3

    Article  PubMed  Google Scholar 

  33. da Silva FC et al (2020) Sensory and motor responses after photobiomodulation associated with physiotherapy in patients with incomplete spinal cord injury: clinical, randomized trial. Lasers Med Sci 35(8):1751–1758. https://doi.org/10.1007/s10103-020-02968-6

  34. Salehpour F, Mahmoudi J, Eyvazzadeh N (2018) Effects of acute and chronic noise stress on depressive-and anxiety-like behaviors in mice. JECN 5(1):1–6. https://doi.org/10.13183/jecns.v5i1.73

    Article  Google Scholar 

  35. Tanaka Y et al (2011) Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul 4(2):71–76. https://doi.org/10.1016/j.brs.2010.04.001

    Article  PubMed  Google Scholar 

  36. Xu Z et al (2009) Antidepressive behaviors induced byenriched environment might be modulated by glucocorticoid levels. Eur Neuropsychopharmacol 19(12):868–875. https://doi.org/10.1016/j.euroneuro.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  37. Bhagya VR et al (2017) Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits. J Neurosci Res 95(8):1602–1610. https://doi.org/10.1002/jnr.23992

    Article  CAS  PubMed  Google Scholar 

  38. Brenes JC, Fornaguera J, Sequeira-Cordero A (2020) Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats. Front Pharmacol 11:804. https://doi.org/10.3389/fphar.2020.00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arndt DL, Peterson CJ, Cain ME (2015) Differential rearing alters forced swim test behavior, fluoxetine efficacy, and post-test weight gain in male rats. PLoS One 10(7):e0131709. https://doi.org/10.1371/journal.pone.0131709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Novas ML et al (1988) Proconvulsant and “anxiogenic” effects of n-butyl beta carboline-3-carboxylate, an endogenous benzodiazepine binding inhibitor from brain. Pharmacol Biochem Behav 30(2):331–336. https://doi.org/10.1016/0091-3057(88)90463-7

    Article  CAS  PubMed  Google Scholar 

  41. Melo FH et al (2010) Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 24(4):437–443. https://doi.org/10.1111/j.1472-8206.2009.00788.x

    Article  CAS  PubMed  Google Scholar 

  42. Sousa FC et al (2004) Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 78(1):27–33. https://doi.org/10.1016/j.pbb.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoudi J et al (2011) Buspirone improves the anti-cataleptic effect of levodopa in 6-hydroxydopamine-lesioned rats. Pharmacol Rep 63(4):908–914. https://doi.org/10.1016/s1734-1140(11)70606-5

    Article  CAS  PubMed  Google Scholar 

  44. Eshaghi E et al (2019) Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice: a study of three different doses of 810 nm laser. Lasers Surg Med 51(7):634–642. https://doi.org/10.1002/lsm.23082

  45. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86(4):447–457. https://doi.org/10.1016/j.bcp.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  46. Salehpour F, Rasta SH (2017) The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 28(4):441–453. https://doi.org/10.1515/revneuro-2016-0087

    Article  CAS  PubMed  Google Scholar 

  47. Salehpour F et al (2016) Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers Surg Med 48(7):695–705. https://doi.org/10.1002/lsm.22542

    Article  PubMed  Google Scholar 

  48. Ando T et al (2011) Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6(10):e26212. https://doi.org/10.1371/journal.pone.0026212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu X et al (2012) Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med 44(3):227–232. https://doi.org/10.1002/lsm.22004

    Article  PubMed  Google Scholar 

  50. Darlot F et al (2016) Near-infrared light is neuroprotective in a monkey model of P arkinson disease. Ann Neurol 79(1):59–75. https://doi.org/10.1002/ana.24542

    Article  PubMed  Google Scholar 

  51. Saltmarche AE et al (2017) Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomed Laser Surg 35(8):432–441. https://doi.org/10.1089/pho.2016.4227

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lim L (2013) The Potential of intranasal light therapy for brain stimulation. In: Presented, NAALTA Conference, Palm Beach Gardens, Florida

  53. Samson J et al (2007) Stress response in rat brain after different durations of noise exposure. Neurosci Res 57(1):143–147. https://doi.org/10.1016/j.neures.2006.09.019

    Article  PubMed  Google Scholar 

  54. Wang S et al (2016) Protective effect of the orientin on noise-induced cognitive impairments in mice. Behav Brain Res 296:290–300. https://doi.org/10.1016/j.bbr.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  55. Sztainberg Y et al (2010) The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol Psychiatry 15(9):905–917. https://doi.org/10.1038/mp.2009.151

    Article  CAS  PubMed  Google Scholar 

  56. Ambrogini P et al (2013) Physical exercise and environment exploration affect synaptogenesis in adult-generated neurons in the rat dentate gyrus: possible role of BDNF. Brain Res 1534:1–12. https://doi.org/10.1016/j.brainres.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  57. Murer M, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63(1):71–124. https://doi.org/10.1016/s0301-0082(00)00014-9

    Article  CAS  PubMed  Google Scholar 

  58. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297. https://doi.org/10.1002/dneu.20758

    Article  CAS  PubMed  Google Scholar 

  60. Shirayama Y et al (2020) Allopregnanolone induces antidepressant-like effects through BDNF-TrkB signaling independent from AMPA receptor activation in a rat learned helplessness model of depression. Behav Brain Res 390:112670. https://doi.org/10.1016/j.bbr.2020.112670

    Article  CAS  PubMed  Google Scholar 

  61. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547. https://doi.org/10.1523/jneurosci.15-11-07539.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Vry J et al (2016) TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice. Behav Brain Res 296:15–25. https://doi.org/10.1016/j.bbr.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  63. Jianhua F et al (2017) Chronic social defeat stress leads to changes of behaviour and memory-associated proteins of young mice. Behav Brain Res 316:136–144. https://doi.org/10.1016/j.bbr.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  64. Seong H-H, Park J-M, Kim Y-J (2018) Antidepressive effects of environmental enrichment in chronic stress–induced depression in rats. Biol Res Nurs 20(1):40–48. https://doi.org/10.1177/1099800417730400

    Article  PubMed  Google Scholar 

  65. Mustroph ML et al (2012) Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J mice. Neuroscience 219:62–71. https://doi.org/10.1016/j.neuroscience.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  66. Fahnestock M et al (2012) BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiol Aging 33(3):546–554. https://doi.org/10.1016/j.neurobiolaging.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  67. Xuan W et al (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8(6):502–511. https://doi.org/10.1002/jbio.201400069

    Article  CAS  PubMed  Google Scholar 

  68. Gomes LEA, Dalmarco EM, André ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30(11):642–647. https://doi.org/10.1089/pho.2012.3242

    Article  CAS  PubMed  Google Scholar 

  69. Nestler EJ et al (2002) Neurobiology of depression. Neuron 34(1):13–25. https://doi.org/10.1016/s0896-6273(02)00653-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was derived from the MSc dissertation of Ms. Narmin Farazi.

Funding

This study was financially supported by the Tabriz University of Medical Sciences, Tabriz, Iran (Grant No: 61995).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Seyed Hossein Rasta, Narmin Farazi, Javad Mahmoudi, Saeed Sadigh-Eteghad, and Fereshteh Farajdokht. The first draft of the manuscript was written by Narmin Farazi, and all authors commented on previous versions of the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Javad Mahmoudi or Seyed Hossein Rasta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

that are relevant to the content of this article.

Ethics approval and consent to participate

All experimental procedures were confirmed by the Animal Ethics Committee.

at Tabriz University of Medical Sciences, Protocol No: IR.TBZMED.VCR.REC.1398.124, which.

were in accordance with the laboratory animal use and care guidelines of the National Institutes of.

Health (NIH).

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farazi, N., Mahmoudi, J., Sadigh-Eteghad, S. et al. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress. Lasers Med Sci 37, 1181–1191 (2022). https://doi.org/10.1007/s10103-021-03370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03370-6

Keywords

Navigation