Skip to main content

Advertisement

Log in

Detection of hypokalemia disorder and its relation with hypercalcemia in blood serum using LIBS technique for patients of colorectal cancer grade I and grade II

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Cancer continues to be the most dangerous disease around the world; it causes electrolyte imbalance as well as metabolic changes. There is a complicated relationship between electrolyte disorder and cancer. Cancer patients commonly pass with abnormalities in serum electrolyte levels such as hypokalemia, hyperkalemia, hyponatremia, and hypercalcemia. So, these electrolyte imbalances indicate the existence of paraneoplastic processes and help come to a more informed prognosis. Hypokalemia is defined as a serum potassium concentration below 3.5 mmol/L and it is the second common electrolyte imbalance seen in patients with malignant diseases. In this paper, the contribution of serum potassium concentration to tumor progression was studied by applying a promising and non-invasive technique called laser-induced breakdown spectroscopy (LIBS). It was found that there is a correlation between hypokalemia and the colorectal cancer problem. Also, significant serum potassium concentration differences were detected among two different stages of the same cancer and also between two groups of the same stage of a cancer held in common but one of them suffers from hypercalcemia. In addition, the optimum conditions of LIBS setup were arranged such that it will be suitable to work with serum samples on glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request, but because it is related to individuals, so it could not be public.

Code availability

Origin Pro 8, 8 SR0, v8.0724, Origin Lab Corporation, USA. Andor SOLIS 64-bit.

References

  1. Sengupta S, Bhaskar MV, Haq I (2010) A study of micronutrient status in pregnancy. J Indian Med Assoc 108:817–822

    PubMed  Google Scholar 

  2. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    CAS  PubMed  Google Scholar 

  3. Rosner Mitchell H, Dalkin Alan C (2014) Electrolyte disorders associated with cancer. Adv Chronic Kidney Dis 21(1):7–17. https://doi.org/10.1053/j.ackd.2013.05.005

    Article  PubMed  Google Scholar 

  4. Yang X-F, Pan K (2014) Diagnosis and management of acute complications in patients with colon cancer: bleeding, obstruction, and perforation. Chin J Cancer Res 26(3):331–340. https://doi.org/10.3978/j.issn.1000-9604.2014.06.11

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A (2018) Hypokalemia: a clinical update. Endocr Connect 4:R135–R146. https://doi.org/10.1530/EC-18-0109

    Article  Google Scholar 

  6. Bockenhauer D, Zieg J (2014) Electrolyte disorders. Clin Perinatol 41:575–590. https://doi.org/10.1016/j.clp.2014.05.007

    Article  PubMed  Google Scholar 

  7. Viera AJ, Wouk N (2015) Potassium disorders: hypokalemia and hyperkalemia. Am Fam Physician 92(6):487–495

    PubMed  Google Scholar 

  8. Rosner Mitchell H, Dalkin Alan C (2014) Electrolyte disorders associated with cancer. Adv Chronic Kidney Dis. 21(1):7–17. https://doi.org/10.1053/j.ackd.2013.05.005

    Article  PubMed  Google Scholar 

  9. Galindo RJ, Romao I, Valsamis A, Weinerman S, Harris YT (2016) Hypercalcemia of malignancy and colorectal cancer. World J Oncol. 7(1):5–12. https://doi.org/10.14740/wjon953w

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stewart AF (2005) Clinical practice. Hypercalcemia associated with cancer. N Engl J Med 352(4):373–379. https://doi.org/10.1056/NEJMcp042806

    Article  CAS  PubMed  Google Scholar 

  11. Grill V, Ho P, Body JJ, Johanson N, Lee SC, Kukreja SC, Moseley JM, Martin TJ (1991) Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia of malignancy and hypercalcemia complicating metastatic breast cancer. J Clin Endocrinol Metab 73(6):1309–1315. https://doi.org/10.1210/jcem-73-6-1309

    Article  CAS  PubMed  Google Scholar 

  12. Adams PC, Woodhouse KW, Adela M, Parnham A (1981) Exaggerated hypokalaemia in acute myeloid leukaemia. Br Med J (Clin Res Ed) 282:1034–1035. https://doi.org/10.1136/bmj.282.6269.1034

    Article  CAS  Google Scholar 

  13. Yoon Johi, Ahn SeoHee, Lee Yong Joo, Kim Chul-Min (2015) Hyponatremia as an independent prognostic factor in patients with terminal cancer. Support Care Cancer 23:1735–1740. https://doi.org/10.1007/s00520-014-2522-7

    Article  PubMed  Google Scholar 

  14. Berardi R, Torniai M, Lenci E, Pecci F, Morgese F, Rinaldi S (2019) Electrolyte disorders in cancer patients: a systematic review. J Cancer Metastasis 5:79. https://doi.org/10.20517/2394-4722.2019.008

    Article  CAS  Google Scholar 

  15. Li Jinrui, Fan Yaohua, Jiang Jin, Zhang Ye (2016) Low serum magnesium implicated in the acute oxaliplatin-induced peripheral neuropathy. Int J Clin Exp Med 9(10):19960–19966 (ISSN:1940-5901/IJCEM0026323)

    CAS  Google Scholar 

  16. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK (2018) Diagnosis, staging, and management of hepatocellular carcinoma. Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 68(2). https://doi.org/10.1002/hep.29913

  17. Aldinger S, Samaan NA (1977) Hypokalemia with hypercalcemia. Prevalence and significance in treatment. Ann Intern Med 87(5):571–573. https://doi.org/10.7326/0003-4819-87-5-571

    Article  CAS  PubMed  Google Scholar 

  18. Than BL, Goos JA, Sarver AL et al (2014) The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 33:3861–3868. https://doi.org/10.1038/onc.2013.350

    Article  CAS  PubMed  Google Scholar 

  19. Cremers DA, Radziemski LJ (1985) Direct detection of beryllium on filters using the laser spark. Appl Spectrosc 39:57–63. https://doi.org/10.1366/0003702854249349

    Article  CAS  Google Scholar 

  20. Liu X-Y, Zhang W-J (2008) Recent developments in biomedicine fields for laser induced breakdown spectroscopy. J Biomed Sci Eng 1:147–151. https://doi.org/10.4236/jbise.2008.13024

    Article  CAS  Google Scholar 

  21. Emara EM, Imam H, Hassan MA, Elnaby SH (2013) Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair. Talanta 117:176–183. https://doi.org/10.1016/j.talanta.2013.08.043

    Article  CAS  PubMed  Google Scholar 

  22. Emara EM, Imam H, Song H, Liu S (2020) Detection of heavy metals using laser induced breakdown spectroscopy technique for both horse hair and goat hair. J Laser Appl 32:042004. https://doi.org/10.2351/7.0000143

    Article  CAS  Google Scholar 

  23. Imam H, Mohamed R, Eldakrouri AA (2012) Primary study of the use of laser-induced plasma spectroscopy for the diagnosis of breast cancer. Opt Photon J 2:193–199. https://doi.org/10.4236/opj.2012.23029

    Article  CAS  Google Scholar 

  24. Imam H, Ahmed D, Eldakrouri A (2013) Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and X-ray photoelectron spectroscopy). J Appl Phys 113:234701. https://doi.org/10.1063/1.4811186

    Article  CAS  Google Scholar 

  25. Chen X, Li X, Yub X, Chenb D, Liu A (2018) Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods. Spectrochim Acta B 139:63–69. https://doi.org/10.1016/j.sab.2017.11.016

    Article  CAS  Google Scholar 

  26. Chen X, Li X, Yang S, Yu X, Liu A (2018) Discrimination of lymphoma using laser induced breakdown spectroscopy conducted on whole blood samples. Biomed Opt Express 9(3):1058. https://doi.org/10.1364/BOE.9.001057

    Article  Google Scholar 

  27. Melikechi N, Ding H, Rock S, Marcano AO, Connolly D (2008) Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds. Proceedings of SPIE - The International Society for Optical Engineering. https://doi.org/10.1117/12.761901

  28. Rehse SJ, Salimnia H, Miziolek AW (2012) Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. J Med Eng Technol 36(2):77–89. https://doi.org/10.3109/03091902.2011.645946

    Article  CAS  PubMed  Google Scholar 

  29. Comes N, Serrano-Albarrás A, Capera J, Serrano-Novillo C, Condom E, Ramón y Cajal S, Ferreres JC, Felipe A (2015) Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta 1848:2477–2492. https://doi.org/10.1016/j.bbamem.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Jan LY (2014) Targeting potassium channels in cancer. J Cell Biol 206(2):151–162. https://doi.org/10.1083/jcb.201404136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castiglioni S, Maier JAM (2011) Magnesium and cancer: a dangerous liason. Magnes Res. 24(3):S92–S100. https://doi.org/10.1684/mrh.2011.0285

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Chen X, Shen Z, Wang Y, Jiachang Hu, Jiarui Xu, Shen Bo, Ding X (2020) Electrolyte and acid-base disorders in cancer patients and its impact on clinical outcomes: evidence from a real-world study in China. Ren Fail 42(1):234–243. https://doi.org/10.1080/0886022X.2020.1735417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yadav AS, Khodke PV (2015) Status of serum electrolytes in cancer patients. Int J Basic Appl Med Sci 5(1):208–211 (ISSN: 2277-2103 (Online))

    Google Scholar 

  34. Chu YW, Chen F, Sheng Z, Zhang D, Zhang S, Wang W, Jin H, Qi J, Guo LB (2020) Blood cancer diagnosis using ensemble learning based on a random subspace method in laser-induced breakdown spectroscopy. Biomed Opt Express 11:4191–4202. https://doi.org/10.1364/BOE.395332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruvalcaba-López JM, Córdova-Fraga T, de la Rosa-Alvarez G, Murillo-Ortiz BO, Martínez-Espinosa JC, Guzmán-Cabrera R, Bernal-Alvarado J (2019) Qualitative evaluation of ferritin in serum samples by Raman spectroscopy and principal component analysis. Lasers Med Sci 34:35–40. https://doi.org/10.1007/s10103-018-2576-8

    Article  PubMed  Google Scholar 

  36. González-Solís JL, Villafan-Bernal JR, Martínez-Zérega BE, Sánchez-Enríquez S (2018) Type 2 diabetes detection based on serum sample Raman spectroscopy. Lasers Med Sci 33:1791–1797. https://doi.org/10.1007/s10103-018-2543-4

    Article  PubMed  Google Scholar 

  37. Babincová M, Durdík Š, Babincová N, Sourivong P, Babinec P (2018) Application of cationized magnet of ferritin for magnetic field-assisted delivery of short interfering RNA in vitro. Lasers Med Sci 33:1807–1812. https://doi.org/10.1007/s10103-018-2547-0

    Article  PubMed  Google Scholar 

  38. Wiwanitkit V (2012) Narrowband ultraviolet B phototherapy and serum folic acid level. Lasers Med Sci. 27:685. https://doi.org/10.1007/s10103-011-0966-2

    Article  PubMed  Google Scholar 

  39. Akan JC, Sodipo OA, Liman Y, Chellube ZM (2014) Determination of heavy metals in blood, urine and water samples by inductively coupled plasma atomic emission spectrophotometer and fluoride using ion-selective electrode. J Anal Bioanal Tech 5:6. https://doi.org/10.4172/2155-9872.1000217

    Article  CAS  Google Scholar 

  40. Bassiotis, Diamantopoulou A, Giannoudakos A, Roubani-Kalantzopoulou F, Kompitsas M (2001) Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 56B:671–683. https://doi.org/10.1016/S0584-8547(01)00225-7

    Article  CAS  Google Scholar 

  41. HH Telle, O Samek: Chapter 7 - Biomedical applications of LIBS. In Laser induced breakdown spectroscopy. University Press, Cambridge; pp 282–313. https://doi.org/10.1017/CBO9780511541261.008

  42. OriginPro 8 SR0, v8.0724, Origin Lab Corporation, USA

  43. El Sherbini AM, El Sherbini ThM, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim Acta B At Spectrosc. 60(12):1573–1579. https://doi.org/10.1016/j.sab.2005.10.011

    Article  CAS  Google Scholar 

  44. Hou J, Zhang L, Yin W, Yao S, Zhao Y, Ma W, Dong L, Xiao L, Jia S (2017) Development and performance evaluation of self-absorption-free laser-induced break down spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements. Opt Express. 25(19):23024–23034. https://doi.org/10.1364/OE.25.023024

    Article  CAS  PubMed  Google Scholar 

  45. Lochte-Holtgreven W (1968) Book of plasma diagnostics. North-Holland Publishing, Amsterdam, p 135

    Google Scholar 

  46. Griem HR (1964) Book of plasma spectroscopy. McGraw-Hill Inc., New York

    Google Scholar 

  47. Ambiga N, A MC, Phil M, A MB (2017) Analysis of elements and foods for the human body and avoiding the unnecessary diseases using big data and artificial intelligence (Food Advisor). IOSR J Comput Eng (IOSR-JCE) - Ver 19(3):57–67. https://doi.org/10.9790/0661-1903025767

    Article  Google Scholar 

  48. Mccabe RE, Kane KK, Zintel HA, Pierson RN (1970) adenocarcinoma of the colon associated with severe hypokalemia: report of a case. Ann Surg 172(6):970–974. https://doi.org/10.1097/00000658-197012000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salman AF, Ali KF, Alwan AF (2013) Evaluation of electrolytes in adult patients with acute leukemia before and after chemotherapy. Baghdad Sci J. 10(2):362–367. https://doi.org/10.21123/bsj.2013.10.2.362-367

    Article  Google Scholar 

  50. Cavusoglu K, Arica SC, Kurtman C (2010) Alterations in serum biochemical parameters of patients with lung cancer exposed to radiotherapy. J Environ Biol. 31(5):841–844

    CAS  Google Scholar 

  51. Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH (2002) Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res. 89(1):1–11. https://doi.org/10.1385/BTER:89:1:1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support for this work from all those people who support us to finish this work, especially those volunteers from Egypt who provided us with the samples of their blood serum. Also, we appreciate and acknowledge all the efforts that have been done from the team of LIBS lab in School of Science, Changchun University of Science and Technology. Again, we are so grateful for the big help done by Dr. Ahmed Ashour—Biokits Lab Technology—the hematologist who has collected and centrifuged the samples.

Funding

This study was funded by NSAF of China (Grant No. 51875006 and 51705009), the National Key Research and Development Project (2018YFB0504400), and the Beijing Commission of Education ( KM201810005001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elshaimaa M. Emara or Shibing Liu.

Ethics declarations

Ethics approval and consent to participate

The authors herein attest that all human studies undertaken as part of research from which this manuscript is derived are in compliance with the regulations of their institutions and generally accepted guidelines governing such work. The authors warrant that this manuscript contains no violation of any existing copyright or other third-party right or any material of an obscene, indecent, libelous, or otherwise unlawful nature, and that to the best of their knowledge, the manuscript does not infringe the rights of others. The entire tested samples were collected from volunteers upon their agreement to use their samples in this research and the sample collection has been conducted under the supervision and observation of a specialist (hematologist) from Biokits Lab Technology (to support medical and scientific research) with license number 8774/14/7/2014 from Ministry of Health & Population, Egypt.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emara, E.M., Song, H., Imam, H. et al. Detection of hypokalemia disorder and its relation with hypercalcemia in blood serum using LIBS technique for patients of colorectal cancer grade I and grade II. Lasers Med Sci 37, 1081–1093 (2022). https://doi.org/10.1007/s10103-021-03355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03355-5

Keywords

Navigation