Effect of photobiomodulation therapy on mini-implant stability: a systematic review and meta-analysis

Abstract

The study aimed to assess trials investigating the effect of PBMT on mini-implant stability. Electronic searches of seven databases and manual search were conducted up to May 2020. Randomized controlled trials and controlled clinical trials evaluating the effect of PBMT on mini-implant stability were included. The risks of bias of individual studies were performed using ROB 2.0 and ROBINS-I-tool based on different study design. Meta-analysis was conducted to compare mini-implant stability exposed to PBMT with control ones at different time points after implantation. Among the 518 records initially identified, seven studies were included in this study. Six studies investigated low-level laser therapy (LLLT) and one study evaluated light-emitting diode (LED) therapy. Two studies were eligible for meta-analysis, which showed that LLLT significantly improved mini-implant stability 60 days after initial implantation (MD − 3.01, 95% CI range [− 4.68, − 1.35], p = 0.0004). High energy density of LLLT began to show beneficial effect on mini-implant stability as early as 3 days after implantation, while the significant effect of low energy density displayed later than 30 days after insertion. LED therapy could improve mini-implant stability after 2 months post-insertion. In conclusion, PBMT appears to be beneficial in ameliorating mini-implant stability. High energy density of LLLT might exert more rapid effect than low energy density. More high-quality clinical trials are needed to further demonstrate PBMT’ effects on orthodontic mini-implants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Kanomi R (1997) Mini-implant for orthodontic anchorage. J Clin Orthod 31:763–767

    CAS  PubMed  Google Scholar 

  2. 2.

    Pithon MM, Santos MJ, Ribeiro MC, Nascimento RC, Rodrigues RS, Ruellas AC et al (2015) Patients’ perception of installation, use and results of orthodontic mini-implants. Acta Odontol Latinoam 28:108–112

    PubMed  Google Scholar 

  3. 3.

    Antoszewska-Smith J, Sarul M, Łyczek J, Konopka T, Kawala B (2017) Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: a systematic review and meta-analysis. Am J Orthod Dentofac Orthop 151:440–455

    Article  Google Scholar 

  4. 4.

    Papadopoulos MA, Papageorgiou SN, Zogakis IP (2011) Clinical effectiveness of orthodontic miniscrew implants: a meta-analysis. J Dent Res 90:969–976

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Chang HP, Tseng YC (2014) Miniscrew implant applications in contemporary orthodontics. Kaohsiung J Med Sci 30:111–115

    PubMed  Article  Google Scholar 

  6. 6.

    Papageorgiou SN, Zogakis IP, Papadopoulos MA (2012) Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofac Orthop 142:577–595.e577

    Article  Google Scholar 

  7. 7.

    Gintautaitė G, Gaidytė A (2017) Surgery-related factors affecting the stability of orthodontic mini implants screwed in alveolar process interdental spaces: a systematic literature review. Stomatologija 19:10–18

    PubMed  Google Scholar 

  8. 8.

    Mohajerani H, Salehi AM, Tabeie F, Shafiei S, Tabrizi R (2020) Can low-level laser and light-emitting diode enhance the stability of dental implants? J Maxillofac Oral Surg 19:302–306

    PubMed  Article  Google Scholar 

  9. 9.

    Anders JJ, Arany PR, Baxter GD, Lanzafame RJ (2019) Light-emitting diode therapy and low-level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37:63–65

    PubMed  Article  Google Scholar 

  10. 10.

    Peplow PV, Chung TY, Ryan B, Baxter GD (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29:285–304

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Noba C, Mello-Moura ACV, Gimenez T, Tedesco TK, Moura-Netto C (2018) Laser for bone healing after oral surgery: systematic review. Lasers Med Sci 33:667–674

    PubMed  Article  Google Scholar 

  12. 12.

    Havlucu U, Bölükbaşı N, Yeniyol S, Çetin Ş, Özdemir T (2015) Effects of light-emitting diode photobiomodulation therapy and BioOss as single and combined treatment in an experimental model of bone defect healing in rats. J Oral Implantol 41:e110–e117

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Natto ZS, Aladmawy M, Levi PA Jr, Wang HL (2015) Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants 30:338–345

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Garcez AS, Suzuki SS, Martinez EF, Iemini MG, Suzuki H (2015) Effects of low-intensity laser therapy over mini-implants success rate in pigs. Lasers Med Sci 30:727–732

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Pinto MR, dos Santos RL, Pithon MM, Araújo MT, Braga JP, Nojima LI (2013) Influence of low-intensity laser therapy on the stability of orthodontic mini-implants: a study in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol 115:e26–e30

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Uysal T, Ekizer A, Akcay H, Etoz O, Guray E (2012) Resonance frequency analysis of orthodontic miniscrews subjected to light-emitting diode photobiomodulation therapy. Eur J Orthod 34:44–51

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    PubMed  Article  Google Scholar 

  19. 19.

    Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Matys J, Flieger R, Gedrange T, Janowicz K, Kempisty B, Grzech-Leśniak K, et al. (2020) Effect of 808 nm semiconductor laser on the stability of orthodontic micro-implants: a split-mouth study. Materials (Basel, Switzerland) 13

  21. 21.

    Marañón-Vásquez GA, Lagravère MO, Borsatto MC, de Souza SS, Watanabe PCA, Matsumoto MAN et al (2019) Effect of photobiomodulation on the stability and displacement of orthodontic mini-implants submitted to immediate and delayed loading: a clinical study. Lasers Med Sci 34:1705–1715

    PubMed  Article  Google Scholar 

  22. 22.

    Flieger R, Gedrange T, Grzech-Leśniak K, Dominiak M, and Matys J (2019) Low-level laser therapy with a 635 nm diode laser affects orthodontic mini-implants stability: a randomized clinical split-mouth trial. J Clin Med 9

  23. 23.

    Abohabib AM, Fayed MM, Labib AH (2018) Effects of low-intensity laser therapy on the stability of orthodontic mini-implants: a randomised controlled clinical trial. J Orthod 45:149–156

    PubMed  Article  Google Scholar 

  24. 24.

    Osman A, Moneim AA, El Harouni N, Shokry M (2017) Long-term evaluation of the effect of low-level laser therapy on orthodontic miniscrew stability and peri-implant gingival condition: a randomized clinical trial. J World Fed Orthodontists 6:109–114

    Article  Google Scholar 

  25. 25.

    Ekizer A, Turker G, Uysal T, Guray E, Tasdemir Z (2016) Light emitting diode mediated photobiomodulation therapy improves orthodontic tooth movement and miniscrew stability: a randomized controlled clinical trial. Lasers Surg Med 48:936–943

    PubMed  Article  Google Scholar 

  26. 26.

    Yanaguizawa MS, Suzuki SS, Martinez EF, Suzuki H, Pelegrin MC, Garcez AS (2017) Effects of low-level laser therapy in orthodontic patients on immediate inflammatory response after mini-implants insertion: a preliminary report. Photomed Laser Surg 35:57–63

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Cronshaw M, Parker S, Anagnostaki E, Lynch E (2019) Systematic review of orthodontic treatment management with photobiomodulation therapy. Photobiomodulation, photomedicine, and laser surgery 37:862–868

    PubMed  Article  Google Scholar 

  28. 28.

    Deana NF, Zaror C, Sandoval P, Alves N (2017) Effectiveness of low-level laser therapy in reducing orthodontic pain: a systematic review and meta-analysis. Pain Res Manag 2017:8560652

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Li FJ, Zhang JY, Zeng XT, Guo Y (2015) Low-level laser therapy for orthodontic pain: a systematic review. Lasers Med Sci 30:1789–1803

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Yi J, Xiao J, Li H, Li Y, Li X, Zhao Z (2017) Effectiveness of adjunctive interventions for accelerating orthodontic tooth movement: a systematic review of systematic reviews. J Oral Rehabil 44:636–654

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Ge MK, He WL, Chen J, Wen C, Yin X, Hu ZA et al (2015) Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci 30:1609–1618

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Skondra FG, Koletsi D, Eliades T, Farmakis ETR (2018) The effect of low-level laser therapy on bone healing after rapid maxillary expansion: a systematic review. Photomed Laser Surg 36:61–71

    PubMed  Article  Google Scholar 

  33. 33.

    Meng M, Yang M, Lv C, Yang Q, Yang Z, Chen S (2017) Effect of low-level laser therapy on relapse of rotated teeth: a systematic review of human and animal study. Photomed Laser Surg 35:3–11

    PubMed  Article  Google Scholar 

  34. 34.

    AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249

    PubMed  Article  Google Scholar 

  35. 35.

    Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EA, Villaverde AG (2013) Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28:651–656

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci 5:163–170

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sohn H, Ko Y, Park M, Kim D, Moon YL, Jeong YJ et al (2015) Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Lasers Surg Med 47:745–755

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Mussttaf RA, Jenkins DFL, Jha AN (2019) Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 95:120–143

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30:255–261

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Turner PS, Nentwig GH (2014) Evaluation of the value of bone training (progressive bone loading) by using the Periotest: a clinical study. Contemp Clin Dent 5:461–465

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Norton MR (2018) Resonance frequency analysis: agreement and correlation of implant stability quotients between three commercially available instruments. Int J Oral Maxillofac Implants

  43. 43.

    Lachmann S, Jäger B, Axmann D, Gomez-Roman G, Groten M, Weber H (2006) Resonance frequency analysis and damping capacity assessment. Part I: an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin Oral Implants Res 17:75–79

    PubMed  Article  Google Scholar 

  44. 44.

    Zix J, Hug S, Kessler-Liechti G, Mericske-Stern R (2008) Measurement of dental implant stability by resonance frequency analysis and damping capacity assessment: comparison of both techniques in a clinical trial. Int J Oral Maxillofac Implants 23:525–530

    PubMed  Google Scholar 

  45. 45.

    Al-Nawas B, Wagner W, Grötz KA (2006) Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 21:726–732

    PubMed  Google Scholar 

  46. 46.

    Wilmes B, Rademacher C, Olthoff G, Drescher D (2006) Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 67:162–174

    PubMed  Article  Google Scholar 

  47. 47.

    Chun YS, Lim WH (2009) Bone density at interradicular sites: implications for orthodontic mini-implant placement. Orthod Craniofacial Res 12:25–32

    CAS  Article  Google Scholar 

  48. 48.

    Pan CY, Liu PH, Tseng YC, Chou ST, Wu CY, Chang HP (2019) Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. J Dent Sci 14:383–388

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Ren C, McGrath C, Yang Y (2015) The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci 30:1881–1893

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    do Nascimento RX, Callera F (2006) Low-level laser therapy at different energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24:601–604

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Natural Science Foundation of China (grant nos. 81900981, 81771048), Sichuan Science and Technology Program (grant no. 2020YFS0170), China Postdoctoral Science Foundation (grant number 2019M663530), Research and Development Foundation of West China Hospital of Stomatology (grant no. RD-02-201904), and Research funding from West China Hospital of Stomatology Sichuan University (grant no. RCDWJS2020-18).

Author information

Affiliations

Authors

Contributions

X.C. and Z.Z. contributed to the design of the study. B.Z. and X.H. performed database search, study selection, and data collection. S.H. and C.Z. conducted risk of bias assessment and meta-analysis. B.Z. wrote the first draft manuscript, and X.C. and Z.Z. revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiao Cen or Zhihe Zhao.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Registration: PROSPERO CRD42020182953.

Supplementary Information

ESM 1

(DOC 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Huang, X., Huo, S. et al. Effect of photobiomodulation therapy on mini-implant stability: a systematic review and meta-analysis. Lasers Med Sci (2021). https://doi.org/10.1007/s10103-021-03281-6

Download citation

Keywords

  • Photobiomodulation therapy
  • Orthodontic mini-implant
  • Stability
  • Systemic review
  • Meta-analysis