Skip to main content

Mechanistic aspects of photobiomodulation therapy in the nervous system

Abstract

Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.

This is a preview of subscription content, access via your institution.

References

  1. Gross AJ, Herrmann TR (2007) History of lasers. World J Urol 25(3):217–220

    PubMed  Google Scholar 

  2. Einstein A (1917) Zur quantentheorie der strahlung. Phys Z 18:121–128

    CAS  Google Scholar 

  3. Rawicz AH, editor (2008) Theodore Harold Maiman and the invention of laser. Photonics, Devices, and Systems IV: International Society for Optics and Photonics.

  4. Weber MJ. Lasers and masers: CRC; 1982.

    Google Scholar 

  5. Shayeganrad G (2020) An introduction to laser. Lasers in Oral and Maxillofacial Surgery: Springer; p. 9-23.

  6. Kaushal H, Kaddoum G (2017) Applications of lasers for tactical military operations. IEEE Access 5:20736–20753

    Google Scholar 

  7. Karlekar A, Bharati S, Saxena R, Mehta K (2015) Assessment of feasibility and efficacy of Class IV laser therapy for postoperative pain relief in off-pump coronary artery bypass surgery patients: a pilot study. Ann Card Anaesth 18(3):317

    PubMed  PubMed Central  Google Scholar 

  8. Sadick NS (2003) Laser treatment with a 1064-nm laser for lower extremity class I–III veins employing variable spots and pulse width parameters. Dermatol Surg 29(9):916–919

    PubMed  Google Scholar 

  9. Wang X, Reddy DD, Nalawade SS, Pal S, Gonzalez-Lima F, Liu HJN (2017) Impact of heat on metabolic and hemodynamic changes in transcranial infrared laser stimulation measured by broadband near-infrared spectroscopy. Neurophotonics 5(1):011004

    PubMed  PubMed Central  Google Scholar 

  10. Ahmed S, Bewsh G, Bhat S (2013) Babu RJJEMDS. Low level laser therapy: healing at the speed of light. 2:7441–7463

  11. Husain Z, Alster TSJC (2016) cosmetic, dermatology i. The role of lasers and intense pulsed light technology in dermatology. 9:29

  12. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F et al (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37(12):3789–3802

    CAS  PubMed  PubMed Central  Google Scholar 

  14. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Select Topics Quant Electron 22(3):348–364

    Google Scholar 

  15. Wang X, Dmochowski JP, Zeng L, Kallioniemi E, Husain M, Gonzalez-Lima F et al (2019) Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Neurophotonics. 6(2):025013

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Roy R, Rajeeva A, Veena J, Jayaram B (2018) Effectiveness of cold laser therapy with exercises and intermittent cervical traction with exercises in cervical radiculopathy: a comparative study.

  17. Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Kerdari M, Soleimani M (2014) Effects of 660 nm low level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Arch Neurosci 1(2):76–81

    Google Scholar 

  19. Shomina S, Bogatov V, Chervinets V (2005) Clinical-microbiological evaluation of the efficacy of combined use of chitosan, low intensity laser radiation and photosensitizer in treatment of patients with acute suppurative maxillofacial periostitis. Stomatologiia. 84(3):23

    CAS  PubMed  Google Scholar 

  20. Iwai T, Ohashi N, Sugiyama S, Kitajima H, Hirota M, Yamanaka S et al (2020) Actinomycotic osteomyelitis with proliferative periostitis arising in the mandibular ramus: an unusual case with spontaneous bone regeneration after coronoidectomy. Oral Radiol:1–9

  21. Chang C-C, Ku C-H, Hsu W-C, Hu Y-A, Shyu J-F, Chang S-T (2014) Five-day, low-level laser therapy for sports-related lower extremity periostitis in adult men: a randomized, controlled trial. Lasers Med Sci 29(4):1485–1494

    PubMed  Google Scholar 

  22. Chang C-C, Ku C-H, Hsu C-S, Chang S-T (2016) Improvement of sacroiliac joint stress bottom-up after convalesce of foot periostitis: a randomized controlled trial. Asia Life Sci 25(1):141–153

    Google Scholar 

  23. Pitzschke A, Lovisa B, Seydoux O, Zellweger M, Pfleiderer M, Tardy Y et al (2015) Red and NIR light dosimetry in the human deep brain. Phys Med Biol 60(7):2921

    CAS  PubMed  Google Scholar 

  24. Karu TI, editor (2000) Mechanisms of low-power laser light action on cellular level. Effects of Low-Power Light on Biological Systems V: International Society for Optics and Photonics.

  25. Carroll L, Humphreys TR (2006) LASER-tissue interactions. Clin Dermatol 24(1):2–7

    PubMed  Google Scholar 

  26. Hartmann S, Moschall M, Schäfer O, Stüpmann F, Timm U, Klinger D et al (2015) Phantom of human adipose tissue and studies of light propagation and light absorption for parameterization and evaluation of noninvasive optical fat measuring devices. Opt Photon J 5(02):33

    Google Scholar 

  27. Tsai C-L, Chen J-C, Wang W-J (2001) Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng 21(1):7–14

    Google Scholar 

  28. Cano-Velázquez MS, Davoodzadeh N, Halaney D, Jonak CR, Binder DK, Hernández-Cordero J, et al., editors (2020) Optical access to the brain through a transparent cranial implant. Optical Biopsy XVIII: Toward Real-Time Spectroscopic Imaging and Diagnosis: International Society for Optics and Photonics.

  29. Currà A, Gasbarrone R, Cardillo A, Trompetto C, Fattapposta F, Pierelli F et al (2019) Near-infrared spectroscopy as a tool for in vivo analysis of human muscles. Sci Rep 9(1):1–14

    Google Scholar 

  30. Gavish L, Rubinstein C, Berlatzky Y, Gavish LY, Beeri R, Gilon D et al (2012) Low level laser arrests abdominal aortic aneurysm by collagen matrix reinforcement in apolipoprotein E-deficient mice. Lasers Surg Med 44(8):664–674

    PubMed  Google Scholar 

  31. Liebert A, Bicknell B, Johnstone DM, Gordon LC, Kiat H, Hamblin MR (2019) “Photobiomics”: can light, including photobiomodulation, alter the microbiome? Photobiomod Photomed Laser Surg 37(11):681–693

    Google Scholar 

  32. Abdulsamee N (2017) Soft and hard dental tissues laser Er: YAG laser: from fundamentals to clinical applications. Review Article. EC Dental Sci 11:149–167

    Google Scholar 

  33. Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918

    PubMed  PubMed Central  Google Scholar 

  34. Esnouf A, Wright PA, Moore JC, Ahmed S (2007) Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electro-therapeut Res 32(1-2):81–86

    Google Scholar 

  35. Janzadeh A, Nasirinezhad F, Masoumipoor M, Jameie SB (2016) Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model. Lasers Med Sci 31(9):1863–1869

    PubMed  Google Scholar 

  36. Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F (2019) Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther 10(1):183

    PubMed  PubMed Central  Google Scholar 

  37. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340

    CAS  PubMed  Google Scholar 

  38. Zhang J, Sun J, Zheng Q, Hu X, Wang Z, Liang Z et al (2020) Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro. J Cell Mol Med

  39. Andreo L, Ribeiro B, Alves A, Martinelli A, Soldera C, Horliana A et al (2020) Effects of photobiomodulation with low-level laser therapy on muscle repair following a peripheral nerve injury in Wistar rats. Photochem Photobiol

  40. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Ther 23(2):161–166

    CAS  Google Scholar 

  41. Rochkind S, Nissan M, Alon M, Shamir M, Salame K (2001) Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 28(3):216–219

    CAS  PubMed  Google Scholar 

  42. Duarte KCN, Soares TT, Magri AMP, Garcia LA, Le Sueur-Maluf L, Renno ACM et al (2018) Low-level laser therapy modulates demyelination in mice. J Photochem Photobiol B Biol 189:55–65

    CAS  Google Scholar 

  43. Yang X, Askarova S, Sheng W, Chen J, Sun AY, Sun GY et al (2011) Low energy laser light (632.8 nm) suppresses amyloid-beta peptide-induced oxidative and inflammatory responses in astrocytes. Biophys J 100(3):624a

    Google Scholar 

  44. Karu TI, Kolyakov S (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Ther 23(4):355–361

    CAS  Google Scholar 

  45. Rochkind S, Shahar A, Alon M, Nevo Z (2002) Transplantation of embryonal spinal cord nerve cells cultured on biodegradable microcarriers followed by low power laser irradiation for the treatment of traumatic paraplegia in rats. Neurol Res 24(4):355–360

    PubMed  Google Scholar 

  46. Ao J, Chidlow G, Wood JP, Casson RJ (2020) Safety profile of slit-lamp-delivered retinal laser photobiomodulation. Translat Vision Sci Technol 9(4):22

    Google Scholar 

  47. Masoumipoor M, Jameie S, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M (2014) Effects of 660-and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci 29(5):1593–1598

    CAS  PubMed  Google Scholar 

  48. Abdel-Magied N, Elkady AA, Fattah SMA (2020) Effect of low-level laser on some metals related to redox state and histological alterations in the liver and kidney of irradiated rats. Biol Trace Elem Res 194(2):410–422

    CAS  PubMed  Google Scholar 

  49. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A (2005) Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Ther 23(1):3–9

    CAS  Google Scholar 

  50. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarti P, Forte E, Mastronicola D, Giuffrè A, Arese M (2012) Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. Biochim Biophys Acta 1817(4):610–619

    CAS  PubMed  Google Scholar 

  52. Karu T (2010) Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.

  53. Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mrna and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 31(3):216–222

    PubMed  Google Scholar 

  54. Wattiez A-S, Sowers LP, Russo AF (2020) Calcitonin gene-related peptide (CGRP): role in migraine pathophysiology and therapeutic targeting. Expert Opin Ther Targets 24(2):91–100

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vijayavenkataraman S (2020) Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater

  56. Janzadeh A, Karami Z, Hosseini M, Zarepour L, Yousefifard M, Nasirinezhad F (2020) The role of CGRP receptor antagonist (CGRP8-37) and Endomorphin-1 combination therapy on neuropathic pain alleviation and expression of Sigma-1 receptors and antioxidants in rats. J Chem Neuroanat 106:101771

    CAS  PubMed  Google Scholar 

  57. Bałkowiec-Iskra E, Vermehren-Schmaedick A, Balkowiec A (2011) Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner. Neuroscience. 180:322–333

    PubMed  Google Scholar 

  58. Guo J-Q, Deng H-H, Bo X, Yang X-S (2017) Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine. Biol Open 6(1):8–16

    CAS  PubMed  Google Scholar 

  59. Messlinger K, Balcziak LK, Russo AF (2020) Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm:1–14

  60. Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR (2014) Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics 7(10):761–765

    CAS  PubMed  Google Scholar 

  61. Sommer AP, Haddad MK, Fecht H-J (2015) Light effect on water viscosity: implication for ATP biosynthesis. Sci Rep 5:12029

    PubMed  PubMed Central  Google Scholar 

  62. Chang S-Y, Lee MY, Chung P-S, Kim S, Choi B, Suh M-W et al (2019) Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep 9(1):1–11

    Google Scholar 

  63. Bernier LP, Ase AR, Séguéla P (2018) P2X receptor channels in chronic pain pathways. Br J Pharmacol 175(12):2219–2230

    CAS  PubMed  Google Scholar 

  64. Guo J, Wang C, Niu X, Zhou F, Li H, Gao W (2019) Effects of resveratrol in the signaling of neuropathic pain involving P2X3 in the dorsal root ganglion of rats. Acta Neurol Belg:1–8

  65. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27(21):R1177–R1R92

    CAS  PubMed  Google Scholar 

  66. Shin DH, Lee E, Hyun J-K, Lee SJ, Chang YP, Kim J-W et al (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344(2):71–74

    CAS  PubMed  Google Scholar 

  67. Li B, Wang X, Cao L (2019) Low-level laser therapy (LLLT) promotes facial nerve regeneration after crush-injury in rats. Int J Clin Exp Med 12(6):7257–7263

    CAS  Google Scholar 

  68. Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL (2018) Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering 5(2):44

    PubMed Central  Google Scholar 

  69. Rochkind S, Nissan M, Razon N, Schwartz M, Bartal A (1986) Electrophysiological effect of HeNe laser on normal and injured sciatic nerve in the rat. Acta Neurochir 83(3-4):125–130

    CAS  PubMed  Google Scholar 

  70. Takhtfooladi MA, Sharifi D (2015) A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 30(9):2319–2324

    PubMed  Google Scholar 

  71. Thunshelle C, Hamblin MR (2016) Transcranial low-level laser (light) therapy for brain injury. Photomed Laser Surg 34(12):587–598

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hamblin MR (2019) Photobiomodulation for traumatic brain injury in mouse models. Photobiomodulation in the Brain: Elsevier; p. 155-68.

  73. Covey TJ, Shucard DW, Meynadasy M, Mang T, Arany PR (2019) Photobiomodulation as a potential therapeutic strategy for improving cognitive and functional outcomes in traumatic brain injury. Photobiomodulation in the Brain: Elsevier. p. 333-61.

  74. Hamblin MR (2019) Mechanisms of photobiomodulation in the brain. Photobiomodulation in the Brain: Elsevier. p. 97-110.

  75. Janzadeh A, Sarveazad A, Yousefifard M, Dameni S, Samani FS, Mokhtarian K et al (2017) Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats. Neuropeptides. 65:90–99

    CAS  PubMed  Google Scholar 

  76. Hu D, Moalem-Taylor G, Potas JR. Red-light (670 nm) therapy reduces mechanical sensitivity and neuronal cell death, and alters glial responses following spinal cord injury in rats. bioRxiv. 2020.

  77. Mojarad N, Janzadeh A, Yousefifard M, Nasirinezhad F (2018) The role of low level laser therapy on neuropathic pain relief and interleukin-6 expression following spinal cord injury: an experimental study. J Chem Neuroanat 87:60–70

    CAS  PubMed  Google Scholar 

  78. Ando T, Sato S, Kobayashi H, Nawashiro H, Ashida H, Hamblin MR (2013) Low-level laser therapy for spinal cord injury in rats: effects of polarization. J Biomed Opt 18(9):098002

    PubMed  PubMed Central  Google Scholar 

  79. Lapchak PA (2012) Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Dev 9(1):71–83

    Google Scholar 

  80. Darlot F, Moro C, El Massri N, Chabrol C, Johnstone DM, Reinhart F et al (2016) Near-infrared light is neuroprotective in a monkey model of P arkinson disease. Ann Neurol 79(1):59–75

    PubMed  Google Scholar 

  81. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T et al (2009) Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 40(4):1359–1364

    PubMed  Google Scholar 

  82. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY et al (2012) Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 44(3):218–226

    PubMed  PubMed Central  Google Scholar 

  83. Wang P, Li T (2019) Which wavelength is optimal for transcranial low-level laser stimulation? J Biophotonics 12(2):e201800173

    PubMed  Google Scholar 

  84. Ramezani F, Razmgir M, Tanha K, Nasirinezhad F, Neshasteriz A, Bahrami-Ahmadi A et al (2020) Photobiomodulation for spinal cord injury: a systematic review and meta-analysis. Physiol Behav 112977

  85. Lapchak PA, Boitano PD (2016) Transcranial near-infrared laser therapy for stroke: how to recover from futility in the NEST-3 clinical trial. Brain Edema XVI: Springer; p. 7-12.

  86. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R et al (2014) Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 45(11):3187–3193

    PubMed  Google Scholar 

  87. Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR (2018) Brain photobiomodulation therapy: a narrative review. Mol Neurobiol 55(8):6601–6636

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leung MC, Lo SC, Siu FK, So KF (2002) Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 31(4):283–288

    PubMed  Google Scholar 

  89. Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV (2016) Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics. 3(3):031404

    PubMed  PubMed Central  Google Scholar 

  90. Eshaghi E, Sadigh-Eteghad S, Mohaddes G, Rasta SH (2019) Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice: a study of three different doses of 810 nm laser. Lasers Surg Med 51(7):634–642

    PubMed  Google Scholar 

  91. Caldieraro MA, Sani G, Bui E, Cassano P (2018) Long-term near-infrared photobiomodulation for anxious depression complicated by Takotsubo cardiomyopathy. J Clin Psychopharmacol 38(3):268–270

    PubMed  Google Scholar 

  92. Kartelishev AV, Kolupaev GP, Vernekina NS, Chebotkov AA, Lakosina ND, Ushakov AA (2004) Laser technologies used in the complex treatment of psychopharmacotherapy resistant endogenic depression. Voenno-meditsinskii Zhurnal 325(11):37–42

    CAS  PubMed  Google Scholar 

  93. Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N et al (2017) Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol 54(6):4551–4559

    CAS  PubMed  Google Scholar 

  94. Chang J, Wang R, Li C, Wang Y, Chu X-P (2018) Transcranial low-level laser therapy for depression and Alzheimerâ   s disease. Neuropsychiatry. 8(2):477–483

    Google Scholar 

  95. Weber M, Fußgänger-May T, Wolf T (2007) The intravenous laser blood irradiation. Introduction of a new therapy. Lasers in Medicine, Science and. Praxis.:664–706

  96. Pin Y, Penn I, Lin P, Wang J, Chuang E (2018) Effects of intravenous laser irradiation of blood on pain, function and depression of fibromyalgia patients. Gen Med (Los Angeles) 6(310):2

    Google Scholar 

  97. Cassano P, Petrie SR, Mischoulon D, Cusin C, Katnani H, Yeung A et al (2018) Transcranial photobiomodulation for the treatment of major depressive disorder. The ELATED-2 pilot trial. Photomed Laser Surg 36(12):634–646

    PubMed  PubMed Central  Google Scholar 

  98. Cassano P, Tran AP, Katnani H, Bleier BS, Hamblin MR, Yuan Y et al (2019) Selective photobiomodulation for emotion regulation: model-based dosimetry study. Neurophotonics. 6(1):015004

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chang JY, Liu CC, Liu IT, Chang ST (2019) Effects of intravascular lase r irradiation of blood on cognitive function in a stroke survivor with hyperhomocysteinemia: dual recuperations in thalamus and serum homocysteine. Biomed J Sci & Tech Res 16:11864–11868

    Google Scholar 

  100. Sung J, Chang S (2019) Reversal of impaired blood flow of the basal ganglion from the prior focal perfusion defect in a case of ischemic infarction: observation during the two stages of administration of intravenous laser irradiation of blood. J Med Stud Res 2(011)

  101. Liu P, Liu C, Liu I, He H, Chang S (2019) Advancement of the cognitive function on laser exposure after tumor removal in a case with neoplasm. J Light Laser Curr Trends 2(006)

  102. Liu EY, Chang S-T (2019) Benefits of intravascular laser irradiation of blood on motor and sensory recovery viewing from brain function images: portrait of a case with chronic Sjögren’s syndrome, Transverse Myelitis, and Guillain-Barré Syndrome. Biomed J Sci & Tech Res 14:10738–10741

    Google Scholar 

  103. Yang W-H, Lin S-P, Chang S-T (2017) Case report: rapid improvement of crossed cerebellar diaschisis after intravascular laser irradiation of blood in a case of stroke. Medicine 96(2)

  104. Gonzalez-Lima F, Barrett DW (2014) Augmentation of cognitive brain functions with transcranial lasers. Front Syst Neurosci 8:36

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonçalves ED, Souza PS, Lieberknecht V, Fidelis GS, Barbosa RI, Silveira PC et al (2016) Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis. Autoimmunity. 49(2):132–142

    PubMed  Google Scholar 

  106. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33(33):13505–13517

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Longo L, Postiglione M, Gabellini M, Longo D, editors. Amyotrophic lateral sclerosis (ALS) treated with low level laser therapy (LLLT): a case report. AIP Conference Proceedings; 2009: American Institute of Physics.

  108. Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U (2009) Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener 4(1):26

    PubMed  PubMed Central  Google Scholar 

  109. Moges H, Vasconcelos OM, Campbell WW, Borke RC, McCoy JA, Kaczmarczyk L et al (2009) Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg Med 41(1):52–59

    PubMed  Google Scholar 

  110. Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons J-A (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 7(1)

  111. Muili KA, Gopalakrishnan S, Eells JT, Lyons JA (2013) Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS One 8(6):e67358

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang YY, Nagata K, Tedford CE, Hamblin MR (2014) Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. J Biophotonics 7(8):656–664

    CAS  PubMed  Google Scholar 

  113. Salehpour F, Farajdokht F, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR et al (2019) Near-infrared photobiomodulation combined with coenzyme Q(10) for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 144:213–222

    CAS  PubMed  Google Scholar 

  114. Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P et al (2019) Photobiomodulation and coenzyme Q(10) treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Front Cell Neurosci 13:74

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Radiation Biology Research Center (RBRC), Physiology Research Center of Iran University of Medical Sciences (IUMS), and International Consortium for Personalized Pain Medicine (ICPPM).

Funding

This study was supported by a scientific project grant (NO: 97-3-75-13319) financed by Iran University of Medical Science (IUMS). MRH was supported by US NIH Grants R01AI050875 and R21AI121700.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atousa Janzadeh or Michael R. Hamblin.

Ethics declarations

Ethical approval

This study was approved by ethical code IR.IUMS.REC.1397.1087.

Conflict of interest

MRH was supported by US NIH Grants R01AI050875 and R21AI121700. MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc., Cleveland, OH; BeWell Global Inc., Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc., Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc., Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc., Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc., Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc., Boston, MA. Consulting: Lexington Int., Boca Raton, FL; USHIO Corp., Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc., Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc., Bee Cave, TX; Mitonix, Newark, DE.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fatemeh Ramezani and Ali Neshasteh-Riz are co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramezani, F., Neshasteh-Riz, A., Ghadaksaz, A. et al. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 37, 11–18 (2022). https://doi.org/10.1007/s10103-021-03277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03277-2

Keywords

  • Photobiomodulation therapy
  • Neuronal cells
  • Oxidative stress
  • Low-level laser therapy
  • Mechanisms