Skip to main content

Advertisement

Log in

The viability of human cells irradiated with 470-nm light at various radiant energies in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405 nm SLD photo-destroys methicillin resistant staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737

    Article  Google Scholar 

  2. Maclean M, Murdoch LE, MacGregor SJ, Anderson JG (2013) Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol 89:120–126

    Article  CAS  Google Scholar 

  3. Bumah VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirschmugl C (2017) Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470 nm) and methicillin-resistant Staphylococcus aureus. J Photochem Photobiol B 167:150–157

    Article  CAS  Google Scholar 

  4. Yoshida A, Sasaki H, Toyama T, Araki M, Fujioka J, Tsukiyama K, Hamada N, Yoshino F (2017) Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci Rep 7:5225. https://doi.org/10.1038/s41598-017-05706-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bumah VV, Masson-Meyers DS, Enwemeka CS (2020) Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. J Photochem Photobiol B 202(January 2020):1117022019

    Google Scholar 

  6. Masson-Meyers DS, Bumah VV, Castel C, Castel D, Enwemeka CS (2020) Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. J Photochem Photobiol B 202(January 2020):111719

    Article  CAS  Google Scholar 

  7. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1-3):88–102

    Article  CAS  Google Scholar 

  8. Rastogi RP, Richa KA, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 16:592980

    Google Scholar 

  9. Biesalski HK, Obermueller-Jevic UC (2001) UV light, beta-carotene and human skin–beneficial and potentially harmful effects. Arch Biochem Biophys 389:1–6

    Article  CAS  Google Scholar 

  10. Blazquez-Castro A, Carrasco E, Calvo MI, Jaén P, Stockert JC, Juarranz A, Sánz-Rodríguez F, Espada J (2012) Protoporphyrin IX-dependent photodynamic production of endogenous ROS stimulates cell proliferation. Eur J Cell Biol 91(3):216–223

    Article  CAS  Google Scholar 

  11. Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman M, Enwemeka CS, Raicu V (2017) Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. J Photochem Photobiol B 170:118–124

    Article  CAS  Google Scholar 

  12. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 132:1901–1907

    Article  CAS  Google Scholar 

  13. Nakashima Y, Ohta S, Wolf AM (2017) Blue light-induced oxidative stress in live skin. Free Radic Biol Med 108:300–310

    Article  CAS  Google Scholar 

  14. McAdam E, Brem R, Karran P (2016) Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. Mol Cancer Res 14(7):612–622

    Article  CAS  Google Scholar 

  15. Hamblin MR, Viveiros J, Yang C, Ahmadi A, Ganz RA, Tolkoff MJ (2005) Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother 49:2822–2827

    Article  CAS  Google Scholar 

  16. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA (2008) The role of oxygen in the visible light inactivation and wavelength sensitivity of Staphylococcus aureus. J Photochem Photobiol B 92:180–184

    Article  CAS  Google Scholar 

  17. Dai T, Gupta A, Huang YY et al (2013) Blue light rescues mice from potentially fatal pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57:1238–1245

    Article  CAS  Google Scholar 

  18. Dai T (2017) The antimicrobial effect of blue light: what are behind? Virulence 8(6):649–652

    Article  Google Scholar 

  19. Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR (2018) The UV/visible radiation boundary region (385–405nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Sci Rep 8(1):12722

    Article  Google Scholar 

  20. Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, Zhao J, Murray CK, Hamblin MR, Hooper DC, Dai T (2016) Antimicrobial blue light inactivation of Gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis 213(9):1380–1387

    Article  CAS  Google Scholar 

  21. Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant (MRSA) in vitro. Photomed Laser Surg 27(2):221–226

    Article  Google Scholar 

  22. Bumah VV, Masson-Meyers DS, Cashin SE, Enwemeka CS (2013) Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA). Photomed Laser Surg 31(11):547–553

    Article  Google Scholar 

  23. Bumah VV, Masson-Meyers DS, Cashin S, Enwemeka CS (2015) Optimization of the antimicrobial effect of blue light on methicillin resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(3):266–272

    Article  Google Scholar 

  24. Bumah VV, Masson-Meyers DS, Enwemeka CS (2015) Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47:595–601

    Article  Google Scholar 

  25. Masson-Meyers DS, Bumah VV, Biener G, Raicu V, Enwemeka CS (2015) The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med Sci 30:2265–2272

    Article  Google Scholar 

  26. Masson-Meyers DS, Bumah VV, Enwemeka CS (2016) A comparison of four methods of determining viability in human dermal fibroblasts irradiated with blue light. J Pharmacol Toxicol Methods 79:15–22

    Article  CAS  Google Scholar 

  27. Masson-Meyers DS, Bumah VV, Enwemeka CS (2016) Blue light does not impair wound healing in vitro. J Photochem Photobiol B 160:53–60

    Article  CAS  Google Scholar 

  28. Tran S-L, Puhar A, Ngo-Camus M, Ramarao N (2011) Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS One 6(9):e22876

    Article  CAS  Google Scholar 

  29. Pescheck M, Dürr C, Blaha L, Sell D (2014) Novel rapid in vitro cytotoxicity test on mammalian cells based on an electrochemical measuring method. J Appl Electrochem 44(8):935–943

    Article  CAS  Google Scholar 

  30. Zwolak I (2015) Comparison of five different in vitro assays for assessment of sodium metavanadate cytotoxicity in Chinese hamster ovary cells (CHO-K1 line). Toxicol Ind Health 31(8):677–690

    Article  CAS  Google Scholar 

  31. Masson-Meyers DS, Andrade TAM, Leite SN, Frade MAC (2013) Cytotoxicity and wound healing properties of Copaifera langsdorffii oleoresin. Int J Nat Prod Sci 3(3):10–20

    Google Scholar 

  32. Seth R, Yang S, Choi S, Sabean M, Roberts EA (2004) In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2. Toxicol In Vitro 18(4):501–509

    Article  CAS  Google Scholar 

  33. Kordowiak AM, Klein A, Goc A, Dabros W (2007) Comparison of the effect of VOSO4, Na3VO4 and NaVO3 on proliferation, viability and morphology of H35-19 rat hepatoma cell line. Pol J Pathol 58(1):51–57

    CAS  PubMed  Google Scholar 

  34. Life Technologies (2005). LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells. http://tools.lifetechnologies.com/content/sfs/manuals/mp03224.pdf Accessed December 16, 2019.

  35. Opländer C, Hidding S, Werners FB, Born M, Pallua N, Suschek CV (2011) Effects of blue light irradiation on human dermal fibroblasts. J Photochem Photobiol B 103(2):118–125

    Article  Google Scholar 

  36. Enwemeka CS (1989) Inflammation, cellularity and fibrillogenesis in the regenerating tendon: implications for tendon rehabilitation. Phys Ther 69:816–825

    Article  CAS  Google Scholar 

  37. Enwemeka CS (1991) Membrane-bound Intracellular collagen fibrils in fibroblasts and myofibroblasts of three regions of the regenerating rabbit calcaneal tendon. Tissue Cell 23(2):173–190

    Article  CAS  Google Scholar 

  38. Liebmann J, Born M, Kolb-Bachofen V (2010) Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol 130:259–269

    Article  CAS  Google Scholar 

  39. Ramakrishnan P, Maclean M, MacGregor SJ, Anderson JG, Grant MH (2016) Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: involvement of reactive oxygen species. Toxicology in vitro 33:54–62

    Article  CAS  Google Scholar 

  40. Smith S, Maclean M, MacGregor SJ, Anderson JG, Grant MH. Exposure of 3T3 mouse fibroblasts and collagen to high intensity blue light. 13th International Conference on Biomedical Engineering. IFMBE Proceedings, vol 23. Berlin, Heidelberg: Springer. 2009, 1352 p.

  41. Phan T, Jaruga B, Pingle S, Bandyopadhyay BC, Ahern GP (2016) Intrinsic photosensitivity enhances motility of T lymphocytes. Sci Rep 20(6):39479

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was received from the SEED Grant, College of Health Sciences, University of Wisconsin-Milwaukee and grant UL1RR031973 from the Clinical and Translational Science Award (CTSA) program of the National Center for Research Resources and the National Center for Advancing Translational Sciences. We thank Dynatronics Corporation, Salt Lake City, for providing the blue light irradiation device pro bono.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukuka Samuel Enwemeka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumah, V.V., Masson-Meyers, D.S., Awosika, O. et al. The viability of human cells irradiated with 470-nm light at various radiant energies in vitro. Lasers Med Sci 36, 1661–1670 (2021). https://doi.org/10.1007/s10103-021-03250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03250-z

Keywords

Navigation