Skip to main content
Log in

Effect of low-level laser irradiation on cytotoxicity of benzene in human normal fibroblast cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Benzene is volatile organic hydrocarbon which is widely used in a wide range of industries. Studies have shown that exposure to benzene consequences serious health risks for human. Understanding the effect and risks of environmental hazard materials in the laser therapy of skin is interesting which can show useful or harmful role of these effects in therapies. In this study, the effect of low-level laser therapy was investigated on benzene-induced cytotoxicity on human skin fibroblast cells (HU02). Human skin fibroblast cells (HU02) were exposed to various concentrations of benzene (0–100 μg/mL) and incubated for 2 h. Then the effect of low-level laser therapy (LLLT) at 660-nm wavelength with 3 J/cm2 energy for 90 s was investigated on the viability of the cells exposed to benzene using MTT assay and inverted light microscope. The effect of low-level laser therapy on the viability of the cells was positive at concentrations 0–15 μg/mL but negative at higher concentrations than 15 μg/mL. Low-level laser therapy in low concentrations of benzene decreases the cytotoxicity caused by benzene and maintains cell viability. At high concentrations and in the presence of low-level laser therapy, the cell viability decreased compared to dark experiment. The morphology study of the cells using inverted light microscopy has confirmed the MTT results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grigoryan H, Edmands WMB, Lan Q, et al (2018) Adductomic signatures of benzene exposure provide insights into cancer induction 39:661–668 . doi: https://doi.org/10.1093/carcin/bgy042

  2. Cocchieri RA, Arnese A, Minicucci AM (1990) Polycyclic aromatic hydrocarbons in marine organisms from Italian Central Mediterranean coasts. Mar Pollut Bull 21:15–18. https://doi.org/10.1016/0025-326X(90)90146-Y

    Article  CAS  Google Scholar 

  3. Bernstein JA, Alexis N, Bacchus H et al (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immunol 121:585–591. https://doi.org/10.1016/j.jaci.2007.10.045

    Article  CAS  PubMed  Google Scholar 

  4. Falzone L, Marconi A, Loreto C et al (2016) Occupational exposure to carcinogens: benzene, pesticides and fibers. Mol Med Rep 14:4467–4474. https://doi.org/10.3892/mmr.2016.5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrews LS, Lee EW, Witmer CM et al (1977) Effects of toluene on the metabolism, disposition and hemopoietic toxicity of [3H]benzene. Biochem Pharmacol 26:293–300. https://doi.org/10.1016/0006-2952(77)90180-0

    Article  CAS  PubMed  Google Scholar 

  6. Bolcsak LE, Nerland DE (1983) Inhibition of erythropoiesis by benzene and benzene metabolites. Toxicol Appl Pharmacol 69:363–368. https://doi.org/10.1016/0041-008X(83)90259-4

    Article  CAS  PubMed  Google Scholar 

  7. Arnold SM, Angerer J, Boogaard PJ et al (2013) The use of biomonitoring data in exposure and human health risk assessment: benzene case study. Crit Rev Toxicol 43:119–153. https://doi.org/10.3109/10408444.2012.756455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. BRIEF RS, LYNCHA J, BERNATH T, SCALA RA (1980) Benzene in the workplace. Am Ind Hyg Assoc J 41:616–623. https://doi.org/10.1080/15298668091425392

    Article  CAS  PubMed  Google Scholar 

  9. Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J (2017) Toxicity of naphthalene and benzene on Tribollium castaneum Herbst. Int J Environ Res Public Health 14:667. https://doi.org/10.3390/ijerph14060667

    Article  CAS  PubMed Central  Google Scholar 

  10. Hosseinzadeh R, Moosavi Movahedi AA, Ghourchian H (2008) New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies. PLoS One 9:308–318. https://doi.org/10.1371/journal.pone.0102992

    Article  CAS  Google Scholar 

  11. Hosseinzadeh R, Moosavi-Movahedi AA, Ghourchian H (2014) Electrochemistry and molecular modeling of the hemoglobin–benzene interaction with a nanocrystalline mixed metal oxide. RSC Adv 4:49128–49136. https://doi.org/10.1039/C4RA08018A

    Article  CAS  Google Scholar 

  12. Hosseinzadeh R, Moosavi-Movahedi AA (2016) Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: a spectroscopic study. Spectrochim Acta - Part A Mol Biomol Spectrosc 157. https://doi.org/10.1016/j.saa.2015.12.014

  13. McHale CM, Zhang L, Lan Q et al (2011) Global gene expression profiling of a population exposed to a range of benzene levels. Environ Health Perspect 119:628–640. https://doi.org/10.1289/ehp.1002546

    Article  CAS  PubMed  Google Scholar 

  14. Carrieri M, Pigini D, Martinelli A et al (2019) Effect of benzene exposure on the urinary biomarkers of nucleic acid oxidation in two cohorts of gasoline pump attendants. Int J Environ Res Public Health 16:129. https://doi.org/10.3390/ijerph16010129

    Article  CAS  PubMed Central  Google Scholar 

  15. Cardoso Bezerra SJ, Fioranelli Vieira G, Eduardo C de P et al (2015) Laser phototherapy (660 nm) can be beneficial for reducing gingival inflammation in prosthodontics. Case Rep Dent 2015:1–6. https://doi.org/10.1155/2015/132656

    Article  Google Scholar 

  16. Morsoleto MJM da, S, Sella V, Machado P, et al (2019) Effect of low power laser in biomodulation of cultured osteoblastic cells of Wistar rats Acta Cir Bras 34: . doi: https://doi.org/10.1590/s0102-8650201900210

  17. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314. https://doi.org/10.1002/lsm.20148

    Article  PubMed  Google Scholar 

  18. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  19. Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci 101:16774–16779. https://doi.org/10.1073/pnas.0405368101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenga C, Gangemi S, Teodoro M et al (2017) 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep 4:291–295. https://doi.org/10.1016/j.toxrep.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Yang X, Zhang Y et al (2018) Platelet mitochondrial cytochrome c oxidase subunit I variants with benzene poisoning. J Thorac Dis 10:6811–6818. https://doi.org/10.21037/jtd.2018.11.82

    Article  PubMed  PubMed Central  Google Scholar 

  22. WIERDA KGAD (1984) In vitro effects of benzene metabolites on mouse bone marrow stromal cells. Toxicol Appl Pharmacol 76:45–55

    Article  Google Scholar 

  23. McHale CM, Zhang L, Smith MT (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33:240–252. https://doi.org/10.1093/carcin/bgr297

    Article  CAS  PubMed  Google Scholar 

  24. Snyder R, Hedli CC (1996) An overview of benzene metabolism. Environ Health Perspect 104:1165–1171. https://doi.org/10.1289/ehp.961041165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553. https://doi.org/10.1159/000485089

    Article  PubMed  Google Scholar 

  26. Huang Y-Y, Nagata K, Tedford CE et al (2012) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics n/a-n/a. https://doi.org/10.1002/jbio.201200157

  27. Kumar Rajendran N, George BP, Chandran R et al (2019) The influence of light on reactive oxygen species and NF-кB in disease progression. Antioxidants 8:640. https://doi.org/10.3390/antiox8120640

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge all the people who helped us do this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Hosseinzadeh or Parvaneh Maghami.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemi, M., Khorsandi, K., Hosseinzadeh, R. et al. Effect of low-level laser irradiation on cytotoxicity of benzene in human normal fibroblast cells. Lasers Med Sci 36, 1831–1836 (2021). https://doi.org/10.1007/s10103-020-03211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03211-y

Keywords

Navigation