Skip to main content

Advertisement

Log in

Photobiomodulation promotes neural regeneration when compared to simvastatin treatment in a sciatic nerve crush model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To determine whether the effects of photobiomodulation (PBM) were associated with the use of Simvastatin in the functional recovery from sciatic nerve in mice submitted to crush injury. Fifty Swiss mice (approximately 3 months old; average weight 40 g) were randomly divided into six groups: naive, sham, control, PBM (660 nm, 10 J/cm2; 30 mW; 0.6 J per day for 28 days; 0.06 cm2; 16.8 J total and 20 s), Simvastatin (20 mg/kg), and PBM/Simv (association of the two protocols). The sciatic functional index (SFI), thermal heat hyperalgesia, mechanical hyperalgesia, and thermographic evaluation were used as analyses. The evaluations were performed preoperatively and 7, 14, 21, and 28 days after the initial injury analyzed by two-way analysis of variance (ANOVA) for mixed models followed by the Bonferroni post-test. All groups except sham and naive presented an SFI compatible with severe peripheral nerve injury on the 7th day of evaluation. The PBM group presented better results in the SFI analysis (p < 0.001) on the 21st postoperative day compared to the control group. This benefit was maintained when compared to the Simvastatin (p < 0.001) and PBM/Simv groups (p < 0.01). The results of the thermal and mechanical hyperalgesia and thermography analyses were not significant (p > 0.05). The obtained results showed that PBM alone was more effective compared to Simvastatin alone or PBM combined with Simvastatin for sciatic nerve injury in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moattari M, Kouchesfehani H, Kaka G, Sadraie H, Naghdi M (2017) Study of transected sciatic nerve repair by biodegradable membrane and betamethasone in adult albino wistar rats. Turk Neurosur: 1-10

  2. Seddon HJ, Medawar PB, Smith H (1943) Rate of regeneration of peripheral nerves in man. J Physiol 102(2):191–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74(4):491–516

    Article  CAS  PubMed  Google Scholar 

  4. Dun XP, Parkinson DB (2018) Whole mount immunostaining on mouse sciatic nerves to visualize events of peripheral nerve regeneration. Methods Mol Biol 1739:339–348

    Article  CAS  PubMed  Google Scholar 

  5. Gallaher ZR, Steward O (2018) Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Exp Neurol 303:120–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andraus RAC, Maia LP, de Souza Lino AD, Fernandes KBP, de Matos Gomes MV, de Jesus Guirro RR et al (2017) LLLT actives MMP-2 and increases muscle mechanical resistance after nerve sciatic rat regeneration. Lasers Med Sci 32(4):771–778

    Article  PubMed  Google Scholar 

  7. Holanda VM, Chavantes MC, Wu X, Anders JJ (2017) The mechanistic basis for photobiomodulation therapy of neuropathic pain by near infrared laser light. Lasers Surg Med 49(5):516–524

    PubMed  Google Scholar 

  8. da Silva Oliveira VR, Cury DP, Yamashita LB, Esteca MV, Watanabe IS, Bergmann YF et al (2018) Photobiomodulation induces antinociception, recovers structural aspects and regulates mitochondrial homeostasis in peripheral nerve of diabetic mice. J Biophotonics 11(9):e201800110

    Article  PubMed  CAS  Google Scholar 

  9. Song JW, Li K, Liang ZW, Dai C, Shen XF, Gong YZ et al (2017)Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 7(1):620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Andreo L, Soldera CB, Ribeiro BG, de Matos PRV, Bussadori SK, Fernandes KPS et al (2017) Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med Sci 32(9):2155–2165

    Article  CAS  PubMed  Google Scholar 

  11. Buchaim DV, Rodrigues Ade C, Buchaim RL, Barraviera B, Junior RS, Junior GM et al (2016) The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve. Lasers Med Sci 31(5):965–725

    Article  PubMed  Google Scholar 

  12. Fallah A, Mirzaei A, Gutknecht N, Saberi-Demneh A (2017) Clinical effectiveness of low-level laser treatment on peripheral somatosensory neuropathy. Lasers Med Sci 32(3):1–8

    Article  Google Scholar 

  13. Ökmen BM, Ökmen K (2017) Comparison of photobiomodulation therapy and suprascapular nerve-pulsed radiofrequency in chronic shoulder pain: a randomized controlled, single-blind, clinical trial. Lasers Med Sci 32(8):1719–1726

    Article  PubMed  Google Scholar 

  14. de Souza LG, Marcolino AM, Kuriki HU, Goncalves ECD, Fonseca MCR, Barbosa RI (2018) Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci 33(6):1341–1349

    Article  PubMed  Google Scholar 

  15. Tomazoni SS, Frigo L, Dos Reis Ferreira TC, Casalechi HL, Teixeira S, de Almeida P et al (2017) Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 1: morphological and functional aspects. Lasers Med Sci 32(9):2111–2120

    Article  PubMed  Google Scholar 

  16. Ziago EK, Fazan VP, Iyomasa MM, Sousa LG, Yamauchi PY, da Silva EA et al (2017) Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 32(2):369–378

    Article  PubMed  Google Scholar 

  17. Vieira G, Cavalli J, Gonçalves ECD, Gonçalves TR, Laurindo LR, Cola M et al (2017) Effects of simvastatin beyond dyslipidemia: exploring its antinociceptive action in an animal model of complex regional pain syndrome-type I. Front Pharmacol 8(584):1–13

    Google Scholar 

  18. Boland AJ, Gangadharan N, Kavanagh P, Hemeryck L, Kieran J, Barry M et al (2018) Simvastatin suppresses interleukin Iβ release in human peripheral blood mononuclear cells stimulated with cholesterol crystals. J Cardiovasc Pharmacol Ther 23(6):509–517

    Article  CAS  PubMed  Google Scholar 

  19. Jeong C, Kim SE, Shim KS, Kim HJ, Song MH, Park K et al (2018) Exploring the in vivo anti-inflammatory actions of simvastatin-loaded porous microspheres on inflamed tenocytes in a collagenase-induced animal model of achilles tendinitis. Int J Mol Sci 19(3):820–835

    Article  PubMed Central  CAS  Google Scholar 

  20. Krysiak R, Kowalcze K, Okopień B (2016) The effect of statin therapy on thyroid autoimmunity in patients with Hashimoto’s thyroiditis: a pilot study. Pharmacol Rep 68(2):429–433

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Rong S, Feng Y, Zhao L, Hong J, Wang R et al (2017) Simvastatin attenuates renal ischemia/reperfusion injury from oxidative stress via targeting Nrf2/HO-1 pathway. Exp Ther Med 14(5):4460–4466

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazzer P, Barbieri C, Mazer N, Fazan V (2006) Qualitative and quantitative evaluation of rats’ acute injuries caused by ischiatic nerve smashing. Acta Ortop Bras 14:220–225

    Article  Google Scholar 

  23. Pachioni C, Mazzer N, Barbieri C, Fazan V, Moro C, Silva C (2006) Sciatic nerve crush injury in rats: vascularizarion study. Acta Ortop Bras 14(4):203–207

    Article  Google Scholar 

  24. Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH, de Cássia Registro Fonseca M (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25(3):423–430

    Article  PubMed  Google Scholar 

  25. Xavier AM, Serafim KGG, Higashi DT, Vanat N, Flaiban KKMC, Siqueira CPCM et al (2012) Simvastatin improves morphological and functional recovery of sciatic nerve injury in Wistar rats. Injury 43(3):284–289

    Article  CAS  PubMed  Google Scholar 

  26. Barbosa RI, Marcolino AM, Guirro RRJ, Mazzer N, Barbieri CH, Fonseca MCR (2010) Efeito do laser de baixa intensidade (660 nm) na regeneração do nervo isquiático lesado em ratos. Fisioterapia e Pesquisa 17:294–299

    Article  Google Scholar 

  27. Marcolino AM, Barbosa RI, das Neves LM, Mazzer N, de Jesus Guirro RR, de Cassia Registro Fonseca M (2013) Assessment of functional recovery of sciatic nerve in rats submitted to low-level laser therapy with different fluences. An experimental study: laser in functional recovery in rats. J Hand Microsurg 5(2):49–53

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A (2015) Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 30(3):1047–1052

    Article  PubMed  Google Scholar 

  29. Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML et al (2014)Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9(8):1–11

    Google Scholar 

  30. de Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77(3):634–643

    Article  PubMed  Google Scholar 

  31. Wang T, Ito A, Aoyama T, Nakahara R, Nakahata A, Ji X et al (2018) Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: a comparison between sciatic functional index and kinematic analysis. PLoS One 13(12):1–13

    Google Scholar 

  32. Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83(1):129–138

    Article  CAS  PubMed  Google Scholar 

  33. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  34. Fernandes ES, Russell FA, Alawi KM, Sand C, Liang L, Salamon R et al (2016) Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Res Ther 18(7):1–12

    Google Scholar 

  35. Andreo L, Soldera CA, Ribeiro BG, de Matos PRV, Sousa PB, de Alcântara Araújo Amorim WW et al (2019) Effects of photobiomodulation on functionality in Wistar rats with sciatic nerve injury. Photochem Photobiol 95(3):879–885

    Article  CAS  PubMed  Google Scholar 

  36. Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL (2018) Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering 5(2):44–46

    Article  PubMed Central  CAS  Google Scholar 

  37. Ohsawa M, Ishikura K-i, Mutoh J, Hisa H (2016) Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain. Neuroscience 333:204–213

    Article  CAS  PubMed  Google Scholar 

  38. Ciric D, Martinovic T, Petricevic S, Trajkovic V, Bumbasirevic V, Kravic-Stevovic T (2018) Metformin exacerbates and simvastatin attenuates myelin damage in high fat diet-fedC57BL/6 J mice. Neuropathology 38(5):468–474

    Article  CAS  PubMed  Google Scholar 

  39. Sasso LL, de Souza LG, Girasol CE, Marcolino AM, de Jesus Guirro RR, Barbosa RI (2020) Photobiomodulation in sciatic nerve crush injuries in rodents: a systematic review of the literature and perspectives for clinical treatment. J Lasers Med Sci 11(3):332–344

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001 and had support from the Exercise Biology Laboratory (LABIOEX), from UFSC by Professor Aderbal Silva Aguiar Junior and Laboratory of Autoimmunity and Immunopharmacology (LAIF), from UFSC by Professor Rafael C. Dutra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Inácio Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were approved by the Animal Ethics Committee (CEUA/UFSC-protocol 8142240317).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.G., Hendler, K.G., Marcolino, A.M. et al. Photobiomodulation promotes neural regeneration when compared to simvastatin treatment in a sciatic nerve crush model. Lasers Med Sci 36, 1591–1597 (2021). https://doi.org/10.1007/s10103-020-03176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03176-y

Keywords

Navigation