Skip to main content

Photobiomodulation therapy for male infertility


Male infertility is a worldwide critical condition that affects about the 7.5% of males in Europe leading to an increment of the couples referring to reproductive medicine units to achieve pregnancy. Moreover, in the recent years, an increased number of patients have required to freeze their gametes in order to preserve their fertility. Photobiomodulation (PBM) therapy is a potential treatment that has been used for different clinical application basically aimed at biostimulating cells and tissues. Here, we report a deep overview of the published studies, focusing on PBM mechanism of action, with the aim of expanding the knowledge in the field of laser light for a rational utilization of irradiation in the clinical practice. In the field of reproductive science, PBM was employed to increment spermatozoa’s metabolism, motility, and viability, due to its beneficial action on mitochondria, leading to an activation of the mitochondrial respiratory chain and to the ATP production. This treatment can be particularly useful to avoid the use of chemicals in the spermatozoa culture medium as well as to promote the spermatozoa survival and movement especially after thawing or in largely immotile sperm samples.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Jungwirth A, Giwercman A, Tournaye H et al (2012) European Association of Urology guidelines on male infertility: the 2012 update. Eur Urol 62:324–332.

    Article  PubMed  Google Scholar 

  2. 2.

    WHO (2010) WHO manual for the standardized investigation, diagnosis and management of the infertile male. In: WHO. Accessed 28 Nov 2019

  3. 3.

    Naz M, Kamal M (2017) Classification, causes, diagnosis and treatment of male infertility: a review. Orient Pharm Exp Med 17:89–109.

    CAS  Article  Google Scholar 

  4. 4.

    O’Flynn O’Brien KL, Varghese AC, Agarwal A (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93:1–12.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Comar M, Zanotta N, Croci E et al (2012) Association between the JC polyomavirus infection and male infertility. PLoS One 7:e42880.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    La Vignera S, Condorelli RA, Vicari E et al (2014) Microbiological investigation in male infertility: a practical overview. J Med Microbiol 63:1–14.

    Article  PubMed  Google Scholar 

  7. 7.

    Fraczek M, Kurpisz M (2015) Mechanisms of the harmful effects of bacterial semen infection on ejaculated human spermatozoa: potential inflammatory markers in semen. Folia Histochem Cytobiol 53:201–217.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    World Health Organization (2010) WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.

  9. 9.

    Giacomini E, Ura B, Giolo E et al (2015) Comparative analysis of the seminal plasma proteomes of oligoasthenozoospermic and normozoospermic men. Reprod BioMed Online 30:522–531.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ricci G, Granzotto M, Luppi S et al (2015) Effect of seminal leukocytes on in vitro fertilization and intracytoplasmic sperm injection outcomes. Fertil Steril 104:87–93.

    Article  PubMed  Google Scholar 

  11. 11.

    Tsai S-R, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207.

    CAS  Article  Google Scholar 

  12. 12.

    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49:1–17.

    CAS  Article  Google Scholar 

  13. 13.

    de Freitas LF, Hamblin MR (2016) Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron:22.

  14. 14.

    Huang Y-Y, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9:602–618.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Amaroli A, Ferrando S, Benedicenti S (2019) Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue. Photochem Photobiol 95:455–459.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sommer AP (2019) Revisiting the photon/cell interaction mechanism in low-level light therapy. Photobiomodul Photomed Laser Surg 37:336–341.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Vladimirovich Moskvin S, Ivanovich Apolikhin O (2018) Effectiveness of low level laser therapy for treating male infertility. Biomedicine (Taipei) 8:7.

    Article  Google Scholar 

  18. 18.

    Lone S, Mohanty T, Kumaresan A, Bhakat M (2017) Laser irradiation effects and its possible mechanisms of action on spermatozoa functions in domestic animals. Asian Pac J Reprod 6:97–103.

    CAS  Article  Google Scholar 

  19. 19.

    Borhani S, Yazdi RS (2018) Clinical applications of low-level laser therapy in reproductive medicine; A Literature Review.

  20. 20.

    Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals — an unpaved road to the egg. Nat Rev Mol Cell Biol 7:276–285.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Karu TI (2012) Lasers in infertility treatment: irradiation of oocytes and spermatozoa. Photomed Laser Surg 30:239–241.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Corral-Baqués MI, Rivera MM, Rigau T et al (2009) The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power. Lasers Med Sci 24:703–713.

    Article  PubMed  Google Scholar 

  23. 23.

    Corral-Baqués MI, Rigau T, Rivera M et al (2005) Effect of 655-nm diode laser on dog sperm motility. Lasers Med Sci 20:28–34.

    Article  PubMed  Google Scholar 

  24. 24.

    Iaffaldano N, Rosato MP, Paventi G et al (2010) The irradiation of rabbit sperm cells with He–Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci 119:123–129.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Abdel-Salam Z, Dessouki SHM, Abdel-Salam SAM et al (2011) Green laser irradiation effects on buffalo semen. Theriogenology 75:988–994.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Iaffaldano N, Paventi G, Pizzuto R et al (2016) Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality. Theriogenology 86:778–784.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Fernandes GHC, de Tarso Camillo de Carvalho P, Serra AJ et al (2015) The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One 10:e0121487.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Siqueira AFP, Maria FS, Mendes CM et al (2016) Effects of photobiomodulation therapy (PBMT) on bovine sperm function. Lasers Med Sci 31:1245–1250.

    Article  PubMed  Google Scholar 

  29. 29.

    Yeste M, Codony F, Estrada E et al (2016) Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Sci Rep:6.

  30. 30.

    Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM (1997) Biological effects of helium-neon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B Biol 40:294–298.

    Article  Google Scholar 

  31. 31.

    Zan-Bar T, Bartoov B, Segal R et al (2005) Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed Laser Surg 23:549–555.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Lubart R, Friedmann H, Levinshal T et al (1992) Effect of light on calcium transport in bull sperm cells. J Photochem Photobiol B Biol 15:337–341.

    CAS  Article  Google Scholar 

  33. 33.

    Breitbart H, Levinshal T, Cohen N et al (1996) Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser). J Photochem Photobiol B Biol 34:117–121.

    CAS  Article  Google Scholar 

  34. 34.

    Lubart R, Friedmann H, Sinyakov M et al (1997) Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med 21:493–499.<493::aid-lsm12>;2-a

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68:407–413

    CAS  Article  Google Scholar 

  36. 36.

    Ankri R, Friedman H, Savion N et al (2009) Visible light induces no formation in sperm and endothelial cells. Lasers Surg Med 42:348–352.

    Article  Google Scholar 

  37. 37.

    Sato H, Landthaler M, Haina D, Schill WB (1984) The effects of laser light on sperm motility and velocity in vitro. Andrologia 16:23–25.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lenzi A, Claroni F, Gandini L et al (1989) Laser radiation and motility patterns of human sperm. Arch Androl 23:229–234.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Singer R, Sagiv M, Barnet M et al (1991) Low energy narrow band non-coherent infrared illumination of human semen and isolated sperm. Andrologia 23:181–184.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Soffer Y, Lubart R, Breitbart H (2000) L’irradiation des spermatozoïdes au Laser HeNe à faible énergie chez la souris et chez l’homme. Andrologie 10:417–426.

    Article  Google Scholar 

  41. 41.

    Firestone RS, Esfandiari N, Moskovtsev SI et al (2012) The effects of low-level laser light exposure on sperm motion characteristics and DNA damage. J Androl 33:469–473.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Shahar S, Wiser A, Ickowicz D et al (2011) Light-mediated activation reveals a key role for protein kinase a and sarcoma protein kinase in the development of sperm hyper-activated motility. Hum Reprod 26:2274–2282.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Salman Yazdi R, Bakhshi S, Jannat Alipoor F et al (2014) Effect of 830-nm diode laser irradiation on human sperm motility. Lasers Med Sci 29:97–104.

    Article  PubMed  Google Scholar 

  44. 44.

    Ban Frangez H, Frangez I, Verdenik I et al (2015) Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Lasers Med Sci 30:235–240.

    Article  PubMed  Google Scholar 

  45. 45.

    Fekrazad E, Keyhan H, Fekrazad R, Tajik A (2014) Effect of diode lasers on human sperm motility. Acad Res Int 5(5):21–25

    Google Scholar 

  46. 46.

    Salama N, El-Sawy M (2015) Light-emitting diode exposure enhances sperm motility in men with and without asthenospermia: preliminary results. Arch Ital Urol Androl 87:14.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Sommer AP, Jaganathan S, Maduro MR et al (2016) Genesis on diamonds II: contact with diamond enhances human sperm performance by 300%. Ann Transl Med 4:407–407.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Preece D, Chow KW, Gomez-Godinez V et al (2017) Red light improves spermatozoa motility and does not induce oxidative DNA damage. Sci Rep:7.

  49. 49.

    Gabel CP, Carroll J, Harrison K (2018) Sperm motility is enhanced by low level laser and light emitting diode photobiomodulation with a dose-dependent response and differential effects in fresh and frozen samples. Laser Ther 27:131–136.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Espey BT, Kielwein K, Liebenthron J et al (2017) Effects of low-level-laser-therapy LLLT on human spermatozoa and its future perspective for reproductive medicine. J Reprod Med Endocrinol 5:221

    Google Scholar 

  51. 51.

    Highland H, Rajput N, Sharma R, George L-B (2018) Differential sensitivity of the human sperm cell to near infrared radiation. J Photochem Photobiol B Biol 183:119–126.

    CAS  Article  Google Scholar 

  52. 52.

    Gabel P, Harrison K (2009) Sperm DNA integrity is not damaged by specific low level laser therapy megadose exposure. Lasers Surg Med 41(supplementary 21):65–66.

    Article  Google Scholar 

  53. 53.

    Abdel-Salam Z, Harith MA (2015) Laser researches on livestock semen and oocytes: a brief review. J Adv Res 6:311–317.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Piomboni P, Focarelli R, Stendardi A et al (2012) The role of mitochondria in energy production for human sperm motility: mitochondria functionality in human spermatozoa. Int J Androl 35:109–124.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Pascolo L, Zupin L, Gianoncelli A et al (2019) XRF analyses reveal that capacitation procedures produce changes in magnesium and copper levels in human sperm. Nucl Instrum Methods Phys Res Sect B 459:120–124.

    CAS  Article  Google Scholar 

  56. 56.

    Schmid TE, Grant PG, Marchetti F et al (2013) Elemental composition of human semen is associated with motility and genomic sperm defects among older men. Hum Reprod 28:274–282.

    Article  PubMed  Google Scholar 

Download references


This research was funded by Institute for Maternal and Child Health, IRCCS Burlo Garofolo, grant number 5mille15D1 and RC15/17.

Author information



Corresponding author

Correspondence to Luisa Zupin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zupin, L., Pascolo, L., Luppi, S. et al. Photobiomodulation therapy for male infertility. Lasers Med Sci 35, 1671–1680 (2020).

Download citation


  • Photobiomodulation therapy
  • Male infertility
  • Spermatozoa