Skip to main content

Advertisement

Log in

Effect of different laser types on bonding strength of CAD/CAM-customized zirconia post to root canal dentin: an experimental study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In clinical dentistry, the strength of bonding zirconia posts to root canal dentinal walls currently needs enhancement, and laser application can be an important contribution owing to its features that accommodate adjustable modifications on dental materials. Herein, the effect of different laser treatments applied to dentin surfaces on the strength of bonding zirconia posts to root canal dentinal walls is evaluated by using the pull-out bond strength test in a laboratory setting. A total of 40 single-rooted permanent mandibular premolar teeth that were freshly extracted were used here. The root canal preparation steps were performed using the crown-down technique. Custom-made zirconia posts were produced using CAD/CAM technology. Prior to the application of resin cement, the internal surfaces of the root canals were irradiated using Nd:YAG, Er:YAG, and KTP lasers. Pull-out tests were performed on each specimen by using a universal testing machine. One-way analysis of variance and Tukey post hoc tests were used to compare the pull-out bond strength data. The bond strengths of the laser-treated specimens were greater than those of the untreated controls (p < 0.05). While the value of the pull-out bond strength after Nd:YAG laser treatment was significantly higher than the values obtained after the applications of the Er:YAG and KTP lasers (p < 0.05), the pull-out bond strength after Er:YAG laser treatment was considerably greater than that after KTP laser treatment (p < 0.05). The bond strength between the root canal dentin and the CAD/CAM custom-made zirconia post was improved upon using all the laser modalities in current laboratory settings, among which, application of the Nd:YAG laser was the most successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Monticelli F, Toledano M, Tay FR, Cury AH, Goracci C, Ferrari M (2006) Post-surface conditioning improves interfacial adhesion in post/core restorations. Dent Mater 22:602–609

    CAS  PubMed  Google Scholar 

  2. Sadek FT, Monticelli F, Goracci C, Tay FR, Cardoso PE, Ferrari M (2007) Bond strength performance of different resin composites used as core materials around fiber posts. Dent Mater 23:95–99

    CAS  PubMed  Google Scholar 

  3. Goracci C, Tavares AU, Fabianelli A et al (2004) The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci 112:353–361

    PubMed  Google Scholar 

  4. Amaral R, Özcan M, Bottino MA, Valandro LF (2006) Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 22:283–290

    CAS  PubMed  Google Scholar 

  5. Arslan H, Barutcigil C, Yılmaz CB, Ceyhanlı KT, Topcuoglu HS (2013) Push-out bond strength between composite core buildup and fiber-reinforced posts after different surface treatments. Photomed Laser Surg 31:328–333

    CAS  PubMed  Google Scholar 

  6. Khalighinejad N, Feiz A, Faghihian R, Swift JE (2014) Effect of dentin conditioning on bond strength of fiber posts and dentin morphology: a review. Am J Dent 27:3–6

    PubMed  Google Scholar 

  7. Zicari F, De Munck J, Scotti R, Naert I, Van Meerbeek B (2012) Factors affecting the cement–post interface. Dent Mater 28:287–297

    CAS  PubMed  Google Scholar 

  8. Monticelli F, Ferrari M, Toledano M (2008) Cement system and surface treatment selection for fiber post luting. Med Oral Patol Oral Cir Bucal 13:214–221

    Google Scholar 

  9. Aslantas EE, Buzoglu HD, Altundasar E, Serper A (2014) Effect of EDTA, sodium hypochlorite, and chlorhexidine gluconate with or without surface modifiers on dentin microhardness. J Endod 40:876–879

    PubMed  Google Scholar 

  10. Bitter K, Noetzel J, Volk C, Neumann K, Kielbassa AM (2008) Bond strength of fiber posts after the application of erbium: yttrium-aluminum-garnet laser treatment and gaseous ozone to the root canal. J Endod 34:306–309

    PubMed  Google Scholar 

  11. Dogan Buzoglu H, Calt S, Gümüsderelioglu M (2007) Evaluation of the surface free energy on root canal dentine walls treated with chelating agents and NaOCl. Int Endod J 40:18–24

    CAS  PubMed  Google Scholar 

  12. Rosenstiel SF, Land MF, Crispin BJ (1998) Dental luting agents: a review of the current literature. J Prosthet Dent 80:280–301

    CAS  PubMed  Google Scholar 

  13. Cilli R, Prakki A, de Araújo PA, Pereira JC (2009) Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J Dent 37:212–218

    CAS  PubMed  Google Scholar 

  14. Garcia FC, Almeida JC, Osorio R, Carvalho RM, Toledano M (2009) Influence of drying time and temperature on bond strength of contemporary adhesives to dentine. J Dent 37:315–320

    CAS  PubMed  Google Scholar 

  15. Sano H, Shono T, Sonoda H et al (1994) Relationship between surface area for adhesion and tensile bond strength—evaluation of a micro-tensile bond test. Dent Mater 10:236–240

    CAS  PubMed  Google Scholar 

  16. Abo-Hamar SE, Hiller K-A, Jung H, Federlin M, Friedl K-H, Schmalz G (2005) Bond strength of a new universal self-adhesive resin luting cement to dentin and enamel. Clin Oral Investig 9:161–167

    PubMed  Google Scholar 

  17. Plasmans P, Visseren L, Vrijhoef M, Käyser A (1986) In vitro comparison of dowel and core techniques for endodontically treated molars. J Endod 12:382–387

    CAS  PubMed  Google Scholar 

  18. Rosenstiel S, Land M, Fujimoto J (2006) Contemporary fixed prosthodontics, 4th edn. Elsevier Health Sciences, St Louis, pp 909–925

    Google Scholar 

  19. Aizawa K, Kameyama A, Kato J et al (2006) Resin bonding to dentin irradiated by high repetition rate Er: YAG laser. Photomed Laser Surg 24:397–401

    CAS  PubMed  Google Scholar 

  20. Birang R, Poursamimi J, Gutknecht N, Lampert F, Mir M (2007) Comparative evaluation of the effects of Nd: YAG and Er: YAG laser in dentin hypersensitivity treatment. Lasers Med Sci 22:21–24

    PubMed  Google Scholar 

  21. Kirmali O, Akin H, Kapdan A (2014) Evaluation of the surface roughness of zirconia ceramics after different surface treatments. Acta Odontol Scand 72:432–439

    CAS  PubMed  Google Scholar 

  22. Marcondes M, Gandolfi Paranhos MP, Spohr AM et al (2009) The influence of the Nd: YAG laser bleaching on physical and mechanical properties of the dental enamel. J Biomed Mater Res B Appl Biomater 90:388–395

    PubMed  Google Scholar 

  23. Sahar-Helft S (2009) The laser technology in dentistry. Refuat Hapeh Vehashinayim 26:12–19 59

    CAS  Google Scholar 

  24. Shiu P, De Souza-Zaroni WC, Eduardo CP, Youssef MN (2007) Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg 25:291–296

    CAS  PubMed  Google Scholar 

  25. Gorler O, Hubbezoglu I, Ulgey M, Zan R, Guner K (2018) Shear bond strength of composite and Ceromer Superstructures to direct laser sintered and Ni-Cr-based infrastructures treated with KTP, Nd: YAG, and Er: YAG lasers: an experimental study. Photomed Laser Surg 36:203–208

    CAS  PubMed  Google Scholar 

  26. Šimundić Munitić M, Bago I, Glockner K, Kqiku L, Gabrić D, Anić I (2019) Effect of different laser treatments on the bond strength of Intracanal Fiber posts cemented with a self-adhesive resin cement. J Prosthodont 28:290–296

    Google Scholar 

  27. Bonfante EA, Pegoraro LF, Mario F, Carvalho RM (2008) SEM observation of the bond integrity of fiber-reinforced composite posts cemented into root canals. Dent Mater 24:483–491

    CAS  PubMed  Google Scholar 

  28. Chieruzzi M, Pagano S, Pennacchi M, Lombardo G, D’Errico P, Kenny JM (2012) Compressive and flexural behaviour of fibre reinforced endodontic posts. J Dent 40:968–978

    CAS  PubMed  Google Scholar 

  29. Ferrari M, Cagidiaco MC, Goracci C et al (2007) Long-term retrospective study of the clinical performance of fiber posts. Am J Dent 20:287

    PubMed  Google Scholar 

  30. Albashaireh ZS, Ghazal M, Kern M (2010) Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts. J Prosthet Dent 103:31–39

    CAS  PubMed  Google Scholar 

  31. Asmussen E, Peutzfeldt A, Heitmann T (1999) Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 27:275–278

    CAS  PubMed  Google Scholar 

  32. Assif D, Gorfil C (1994) Biomechanical considerations in restoring endodontically treated teeth. J Prosthet Dent 71:565–567

    CAS  PubMed  Google Scholar 

  33. Perdigão J, Gomes G, Lee IK (2006) The effect of silane on the bond strengths of fiber posts. Dent Mater 22:752–758

    PubMed  Google Scholar 

  34. Bitter K, Noetzel J, Neumann K, Kielbassa AM (2007) Effect of silanization on bond strengths of fiber posts to various resin cements. Quintessence Int 38:121–128

    PubMed  Google Scholar 

  35. de Durâo Mauricio PJB, González-López S, Aguilar-Mendoza JA, Félix S, González-Rodríguez MP (2007) Comparison of regional bond strength in root thirds among fiber-reinforced posts luted with different cements. J Biomed Mater Res B Appl Biomater 83:364–372

    PubMed  Google Scholar 

  36. Kremeier K, Fasen L, Klaiber B, Hofmann N (2008) Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro. Dent Mater 24:660–666

    CAS  PubMed  Google Scholar 

  37. Schmage P, Pfeiffer P, Pinto E, Platzer U, Nergiz I (2009) Influence of oversized dowel space preparation on the bond strengths of FRC posts. Oper Dent 34:93–101

    PubMed  Google Scholar 

  38. Perdigão J, Geraldeli S, Lee IK (2004) Push-out bond strengths of tooth-colored posts bonded with different adhesive systems. Am J Dent 17:422–426

    PubMed  Google Scholar 

  39. Goracci C, Ferrari M (2011) Current perspectives on post systems: a literature review. Aust Dent J 56:77–83

    PubMed  Google Scholar 

  40. Qualtrough A, Mannocci F (2003) Tooth-colored post systems: a review. Oper Dent 28:86–91

    CAS  PubMed  Google Scholar 

  41. Bitter K, Priehn K, Martus P, Kielbassa AM (2006) In vitro evaluation of push-out bond strengths of various luting agents to tooth-colored posts. J Prosthet Dent 95:302–310

    CAS  PubMed  Google Scholar 

  42. Ferrari M, Breschi L, Grandini S (2008) Fiber posts and endodontically treated teeth: a compendium of scientific and clinical perspectives, Wendywood

  43. Rosentritt M, Fürer C, Behr M, Lang R, Handel G (2000) Comparison of in vitro fracture strength of metallic and tooth-coloured posts and cores. J Oral Rehabil 27:595–601

    CAS  PubMed  Google Scholar 

  44. Sirimai S, Riis DN, Morgano SM (1999) An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-core systems. J Prosthet Dent 81:262–269

    CAS  PubMed  Google Scholar 

  45. Awad MA, Marghalani TY (2007) Fabrication of a custom-made ceramic post and core using CAD-CAM technology. J Prosthet Dent 98:161–162

    PubMed  Google Scholar 

  46. Streacker AB, Geissberger M (2007) The milled ceramic post and core: a functional and esthetic alternative. J Prosthet Dent 98:486–487

    PubMed  Google Scholar 

  47. Mohammadi N, Oskoee SS, Kahnamoui MA, Bahari M, Kimyai S, Rikhtegaran S (2013) Effect of Er, Cr: YSGG pretreatment on bond strength of fiber posts to root canal dentin using a self-adhesive resin cement. Lasers Med Sci 28:65–69

    PubMed  Google Scholar 

  48. Nagase DY, de Freitas PM, Morimoto S, Oda M, Vieira GF (2011) Influence of laser irradiation on fiber post retention. Lasers Med Sci 26:377–380

    PubMed  Google Scholar 

  49. Burnett LH Jr, Conceição EN, Pelinos JE, Eduardo CDP (2001) Comparative study of influence on tensile bond strength of a composite to dentin using Er: YAG laser, air abrasion, or air turbine for preparation of cavities. J Clin Laser Med Surg 19:199–202

    PubMed  Google Scholar 

  50. Keller U, Hibst R (1989) Experimental studies of the application of the Er: YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Lasers Surg Med 9:345–351

    CAS  PubMed  Google Scholar 

  51. Arslan H, Yılmaz CB, Karatas E, Barutcigil C, Topcuoglu HS, Yeter KY (2015) Efficacy of different treatments of root canal walls on the pull-out bond strength of the fiber posts. Lasers Med Sci 30:863–868

    PubMed  Google Scholar 

  52. Takeda FH, Harashima T, Kimura Y, Matsumoto K (1998) Efficacy of Er:YAG laser irradiation in removing debris and smear layer on root canal walls. J Endod 24:548–551

    CAS  PubMed  Google Scholar 

  53. Miserendino LJ, Levy GC, Rizoiu IM (1995) Effects of Nd: YAG laser on the permeability of root canal wall dentin. J Endod 21:83–87

    CAS  PubMed  Google Scholar 

  54. Israel M, Cobb CM, Rossmann JA, Spencer P (1997) The effects of C02, Nd: YAG and Er: YAG lasers with and without surface coolant on tooth root surfaces: an in vitro study. J Clin Periodontol 24:595–602

    CAS  PubMed  Google Scholar 

  55. Katalinić I, Glockner K, Anić I (2014) Influence of several root canal disinfection methods on pushout bond strength of self-etch post and core systems. Int Endod J 47:140–146

    PubMed  Google Scholar 

  56. Kıvanç BH, Arısu HD, Özcan S, Görgül G, Alaçam T (2012) The effect of the application of gaseous ozone and ND: YAG laser on glass-fibre post bond strength. Aust Endod J 38:118–123

    PubMed  Google Scholar 

  57. Lin CP, Lee BS, Lin FH, Kok SH, Lan WH (2001) Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment. J Endod 27:389–393

    CAS  PubMed  Google Scholar 

  58. Schoop U, Kluger W, Dervisbegovic S et al (2006) Innovative wavelengths in endodontic treatment. Lasers Surg Med 38:624–630

    PubMed  Google Scholar 

  59. Oznurhan F, Ozturk C, Ekei ES (2015) Effects of different cavity-disinfectants and potassium titanyl phosphate laser on microtensile bond strength to primary dentin. Niger J Clin Pract 18:400–404

    CAS  PubMed  Google Scholar 

  60. Oznurhan F, Kapdan A, Buldur B, Ozturk C (2015) Influence of erbium: yttrium-aluminum-garnet laser, potassium titanyl phosphate laser irradiation, and acid etch on microtensile bond strength of adhesives. J Pediatr Dent 3:46

    Google Scholar 

  61. Tewfik HM, Pashley DH, Horner JA, Sharawy MM (1993) Structural and functional changes in root dentin following exposure to KTP/532 laser. J Endod 19:492–497

    CAS  PubMed  Google Scholar 

  62. Aksornmuang J, Foxton RM, Nakajima M, Tagami J (2004) Microtensile bond strength of a dual-cure resin core material to glass and quartz fibre posts. J Dent 32:443–450

    CAS  PubMed  Google Scholar 

  63. Al-harbi F, Nathanson D (2003) In vitro assessment of retention of four esthetic dowels to resin core foundation and teeth. J Prosthet Dent 90:547–555

    PubMed  Google Scholar 

  64. Bouillaguet S, Troesch S, Wataha JC, Krejci I, Meyer J-M, Pashley DH (2003) Microtensile bond strength between adhesive cements and root canal dentin. Dent Mater 19:199–205

    CAS  PubMed  Google Scholar 

  65. D’Arcangelo C, Cinelli M, De Angelis F, D’Amario M (2007) The effect of resin cement film thickness on the pullout strength of a fiber-reinforced post system. J Prosthet Dent 98:193–198

    PubMed  Google Scholar 

  66. Ngoh EC, Pashley DH, Loushine RJ, Weller RN, Kimbrough WF (2001) Effects of eugenol on resin bond strengths to root canal dentin. J Endod 27:411–414

    CAS  PubMed  Google Scholar 

  67. Sudsangiam S, van Noort R (1999) Do dentin bond strength tests serve a useful purpose. J Adhes Dent 1:57–67

    CAS  PubMed  Google Scholar 

  68. Xible AA, de Jesus Tavarez RR, de Araujo CDRP, Bonachela WC (2006) Effect of silica coating and silanization on flexural and composite-resin bond strengths of zirconia posts: an in vitro study. J Prosthet Dent 95:224–229

    CAS  PubMed  Google Scholar 

  69. Binus S, Koch A, Petschelt A, Berthold C (2013) Restoration of endodontically treated teeth with major hard tissue loss–bond strength of conventionally and adhesively luted fiber-reinforced composite posts. Dent Traumatol 29:339–354

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zhermack SpA, Italy, for donating the impression materials used in this study. The authors have no commercial relationships to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melih Ulgey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding information

The funding body had no further role in the study design, research process, preparation of the manuscript, and the decision to submit the paper for publication.

Ethical approval

The study was approved by the Human Research Ethics Committee of our university (No 2019–07/52).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulgey, M., Zan, R., Hubbezoglu, I. et al. Effect of different laser types on bonding strength of CAD/CAM-customized zirconia post to root canal dentin: an experimental study. Lasers Med Sci 35, 1385–1392 (2020). https://doi.org/10.1007/s10103-020-02980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-02980-w

Keywords

Navigation