Skip to main content

Advertisement

Log in

Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis denotes hyperplasia and intense inflammatory process. Treatment involves exercise protocols and use of resources such as low-level laser therapy (LLLT) to modulate the inflammatory process and maintain physical capacity. The objective was to investigate whether treatment with LLLT and exercise modulates the inflammatory process and peripheral functionality. Sample is composed of 128 male rats, separated into three groups, control, treated and untreated, in the acute and chronic period of the disease with 64 animals in each group, divided into 8 subgroups with n = 8. The animals were immunized with injection at the base of the tail and 7 days after intra-articular injection with complete Freund adjuvant (CFA) for lesion groups, and saline solution for the controls. Joint disability was evaluated by PET (paw elevation time) and joint edema and treated with LLLT and/or resisted stair climbing exercise. Normality Shapiro-Wilk test, ANOVA mixed for the functional analyses, and ANOVA one-way for the variables of cellular differentiation, with Bonferroni post hoc, p = 5% were used. For the evaluations of joint disability and nociception, there was a significant difference between the evaluations, the groups, and the interaction groups-evaluations. The treated groups showed recovery of functionality; it is still verified that laser therapy increased the nociceptive threshold of the chronic inflammatory period, and the exercise reflected in significant functional improvement and modulation of the inflammatory process both in the acute and chronic periods. LLLT, resistance exercise, or a combination of treatments had a positive effect on the modulation of the inflammatory process, reducing the migration of leukocytes, in addition to helping the return of peripheral functionality by reducing joint disability in a model of rheumatoid arthritis induced by CFA in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Macedo RBV, Kakehasi AM, de Andrade MVM (2016) Ação da IL33 na artrite reumatoide: contribuição para a fisiopatalogia. Rev Bras Reumatol 56:451–457. https://doi.org/10.1016/j.rbr.2016.01.006

    Article  Google Scholar 

  2. Alves ACA, Carvalho PTC, Parente M et al (2013) Low-level laser therapy in different stages of rheumatoid arthritis : a histological study. Lasers Med Sci 28:529–536. https://doi.org/10.1007/s10103-012-1102-7

    Article  PubMed  Google Scholar 

  3. Salmeron JL, Rahimi SA, Navali AM, Sadeghpour A (2017) Medical diagnosis of rheumatoid arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing 232:104–112. https://doi.org/10.1016/j.neucom.2016.09.113

    Article  Google Scholar 

  4. Clavel G, Valvason C, Yamaoka K et al (2006) Relationship between angiogenesis and inflammation in experimental arthritis. Eur Cytokine Netw 17:202–210

    CAS  PubMed  Google Scholar 

  5. Gazeau P, Alegria GC, Devauchelle-pensec V et al (2017) Memory B cells and response to abatacept in rheumatoid arthritis. Clin Rev Allergy Immunol 53:166–176. https://doi.org/10.1007/s12016-017-8603-x

    Article  CAS  PubMed  Google Scholar 

  6. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C (2016) Articular cartilage: from formation to tissue engineering. Biomater Sci 4:734–767. https://doi.org/10.1039/C6BM00068A

    Article  CAS  PubMed  Google Scholar 

  7. Hurkmans EJ, Jones A, Li LC, Vlieland TPMV (2011) Quality appraisal of clinical practice guidelines on the use of physiotherapy in rheumatoid arthritis: a systematic review. Rheumatology 50:1879–1888. https://doi.org/10.1093/rheumatology/ker195

    Article  PubMed  Google Scholar 

  8. De Santana FS, Nascimento DDC, De Freitas JPM et al (2014) Avaliação da capacidade funcional em pacientes com artrite reumatoide: implicações para a recomendação de exercícios físicos. Rev Bras Reumatol 4:378–385. https://doi.org/10.1016/j.rbr.2014.03.021

    Article  Google Scholar 

  9. Assis L, Milares LP, Almeida T et al (2016) Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr Cartil 24:169–177. https://doi.org/10.1016/j.joca.2015.07.020

    Article  CAS  Google Scholar 

  10. Neves LM d S, Leite G d PMF, Marcolino AM et al (2017) Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci 32:335–341. https://doi.org/10.1007/s10103-016-2118-1

    Article  PubMed  Google Scholar 

  11. Da Silva G, Gomes HS, Neves M et al (2017) Proprioceptive evaluation in healthy women undergoing infrared low level laser therapy. Motriz Rev Educ Fis:23. https://doi.org/10.1590/S1980-6574201700020001

  12. Smolen JS, Landewé R, Bijlsma J et al (2017) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76:960–977. https://doi.org/10.1136/annrheumdis-2016-210715

    Article  PubMed  Google Scholar 

  13. Katz P (2017) Causes and consequences of fatigue in rheumatoid arthritis. Curr Opin Rheumatol 29:269–276. https://doi.org/10.1097/BOR.0000000000000376

    Article  PubMed  Google Scholar 

  14. Gomes RP, Bressan E, Morgana T et al (2013) Standardization of an experimental model suitable for studies on the effect of exercise on arthritis Padronização de modelo experimental adequado a estudos do efeito do exercício na artrite. Einstein 11:76–82. https://doi.org/10.1590/S1679-45082013000100014

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tonussi CR, Ferreira SH (1992) Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain 48:421–427. https://doi.org/10.1016/0304-3959(92)90095-S

    Article  CAS  PubMed  Google Scholar 

  16. Gomes RP, Bressan E, da Silva TM et al (2014) Efeitos de um minuto e dez minutos de deambulação em ratos com artrite induzida por adjuvante completo de Freund sobre os sintomas de dor e edema. Rev Bras Reumatol 54:83–89. https://doi.org/10.1016/j.rbr.2014.03.001

    Article  PubMed  Google Scholar 

  17. Lovison K, Vieira L, Kunz RI et al (2018) Resistance exercise recovery morphology and AQP1 expression in denervated soleus muscle of Wistar rats. Motricidade 14:40–50

    Article  Google Scholar 

  18. De Queiroz F, Roge C (2006) Contribution of TNF a, IL-1 b and CINC-1 for articular incapacitation, edema and cell migration in a model of LPS-induced reactive arthritis. Cytokine 36:83–89. https://doi.org/10.1016/j.cyto.2006.11.007

    Article  CAS  Google Scholar 

  19. Lange E, Palstam A, Gjertsson I, Mannerkorpi K (2019) Aspects of exercise with person-centred guidance influencing the transition to independent exercise: a qualitative interview study among older adults with rheumatoid arthritis. Eur Rev Aging Phys Act 16:1–12. https://doi.org/10.1186/s11556-019-0211-8

    Article  Google Scholar 

  20. Beasley J (2012) Osteoarthritis and rheumatoid arthritis: conservative therapeutic management. J Hand Ther 25:163–172. https://doi.org/10.1016/j.jht.2011.11.001

    Article  PubMed  Google Scholar 

  21. Capalonga L, Karsten M, Hentschke VS et al (2016) Light-emitting diode therapy (LEDT) improves functional capacity in rats with heart failure. Lasers Med Sci 31:937–944. https://doi.org/10.1007/s10103-016-1922-y

    Article  PubMed  Google Scholar 

  22. da Silva MM, Albertini R, de Tarso Camillo de Carvalho P et al (2018) Randomized, blinded, controlled trial on effectiveness of photobiomodulation therapy and exercise training in the fibromyalgia treatment. Lasers Med Sci 33:343–351

    Article  PubMed  Google Scholar 

  23. Alfredo PP, Bjordal JM, Dreyer SH et al (2012) Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: a randomized double-blind study. Clin Rehabil 26:523–533. https://doi.org/10.1177/0269215511425962

    Article  PubMed  Google Scholar 

  24. Brosseau L, Welch V, Ga W et al (2005) Low level laser therapy (Classes I , II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev 19:CD002049. https://doi.org/10.1002/14651858.CD002049.pub2.www.cochranelibrary.com

    Article  Google Scholar 

  25. Issa JPM, Trawitzki BF, Ervolino E et al (2017) Low-intensity laser therapy efficacy evaluation in FVB mice subjected to acute and chronic arthritis. Lasers Med Sci 32:1269–1277. https://doi.org/10.1007/s10103-017-2235-5

    Article  PubMed  Google Scholar 

  26. Hsieh YL, Fan YC, Yang CC (2016) Low-level laser therapy alleviates mechanical and cold allodynia induced by oxaliplatin administration in rats. Support Care Cancer 24:233–242. https://doi.org/10.1007/s00520-015-2773-y

    Article  PubMed  Google Scholar 

  27. Rueda-Vergara R, Sánchez-Pérez E (2016) Efectividad de la terapia láser de baja intensidad en pacientes con artritis reumatoide: una revisión sistemática de ensayos clínicos. Fisioterapia 38:152–158. https://doi.org/10.1016/j.ft.2015.05.006

    Article  Google Scholar 

  28. Piva JAAC, Silva VS, Abreu EMC, Nicolau RA (2011) Effect of low-level laser therapy on the initial stages of tissue repair: basic principles. An Bras Dermatol 86:947–954. https://doi.org/10.1590/S0365-05962011000500013

    Article  PubMed  Google Scholar 

  29. Rausch Osthoff AK, Juhl CB, Knittle K et al (2018) Effects of exercise and physical activity promotion: meta-analysis informing the 2018 EULAR recommendations for physical activity in people with rheumatoid arthritis, spondyloarthritis and hip/knee osteoarthritis. RMD Open 4:e000713. https://doi.org/10.1136/rmdopen-2018-000713

    Article  PubMed  PubMed Central  Google Scholar 

  30. Metsios GS, Kitas GD (2019) Physical activity, exercise and rheumatoid arthritis: effectiveness, mechanisms and implementation. Best Pract Res Clin Rheumatol 32:669–682. https://doi.org/10.1016/j.berh.2019.03.013

    Article  Google Scholar 

  31. Shimomura S, Inoue H, Arai Y et al (2018) Treadmill running ameliorates destruction of articular cartilage and subchondral bone, not only synovitis, in a rheumatoid arthritis rat model. Int J Mol Sci 19:E1653. https://doi.org/10.3390/ijms19061653

    Article  CAS  PubMed  Google Scholar 

  32. Schaible HG, Straub RH (2014) Function of the sympathetic supply in acute and chronic experimental joint inflammation. Auton Neurosci Basic Clin 182:55–64. https://doi.org/10.1016/j.autneu.2013.12.004

    Article  Google Scholar 

  33. König C, Zharsky M, Möller C et al (2014) Involvement of peripheral and spinal tumor necrosis factor α in spinal cord hyperexcitability during knee joint inflammation in rats. Arthritis Rheum 66:599–609. https://doi.org/10.1002/art.38271

    Article  CAS  Google Scholar 

  34. Vincent TL, Williams RO, Maciewicz R et al (2012) Mapping pathogenesis of arthritis through small animal models. Rheumatol (UK) 51:1931–1941. https://doi.org/10.1093/rheumatology/kes035

    Article  Google Scholar 

  35. Stein T, Souza-Silva E, Mascarin L et al (2016) Histaminergic pharmacology modulates the analgesic and antiedematogenic effects of spinally injected morphine. Anesth Analg 123:238–243. https://doi.org/10.1213/ANE.0000000000001326

    Article  CAS  PubMed  Google Scholar 

  36. Groetzner P, Weidner C (2010) The human vasodilator axon reflex-an exclusively peripheral phenomenon? Pain 149:71–75. https://doi.org/10.1016/j.pain.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  37. Sousa-Valente J, Brain SD (2018) A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol 40:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sorkin LS, Eddinger KA, Woller SA, Yaksh TL (2018) Origins of antidromic activity in sensory afferent fibers and neurogenic inflammation. Semin Immunopathol 40:237–247

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rojas-Ortega M, Cruz R, Vega-López MA et al (2015) Exercise modulates the expression of IL-1β and IL-10 in the articular cartilage of normal and osteoarthritis-induced rats. Pathol Res Pract 211:435–443. https://doi.org/10.1016/j.prp.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  40. Hernández-hernández MV, Díaz-gonzález F (2017) Role of physical activity in the management and assessment of rheumatoid arthritis patients. Reumatol Clín (Engl Ed) 13:214–220. https://doi.org/10.1016/j.reumae.2016.04.014

    Article  Google Scholar 

  41. Lukachewski JM, Cornelian BR, Barbosa CP (2015) A influência do exercício físico sobre a artrite reumatoide–uma revisão de literatura. Conex Educ Física, Esporte e Saúde 13:119–136

    Google Scholar 

  42. Kumar RA, Li Y, Dang Q, Yang F (2018) Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65:348–359. https://doi.org/10.1016/j.intimp.2018.10.016

    Article  CAS  Google Scholar 

  43. Kunz RI, Silva LI, da Costa JRG et al (2015) Alterações histomofometricas na articulação do joelho de ratos Wistar após remobilização em meio aquático. Fisioter e Pesqui 22:317–324. http://www.scielo.br/pdf/fp/v22n3/en_2316-9117-fp-22-03-00317.pdf. Accessed 20 June 2019

  44. Jin C, Ekwall AH, Bylund J et al (2012) Human synovial lubricin expresses sialyl Lewis x determinant and has L-selectin ligand activity. J Biol Chem 287:35922–35933. https://doi.org/10.1074/jbc.M112.363119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—master’s and post-doctoral fellowship. Fundação Araucária—Edital of Basic and Applied Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladson Ricardo Flor Bertolini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research project was approved by the Ethics Committee for Animal Use of the Universidade Estadual do Oeste do Paraná.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, M., Retameiro, A.C.B., Tavares, A.L. et al. Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis. Lasers Med Sci 35, 1277–1287 (2020). https://doi.org/10.1007/s10103-019-02905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02905-2

Keywords

Navigation