Skip to main content
Log in

Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Observe the influence of femtosecond laser cutting on corneal biomechanics during small-incision lenticule extraction (SMILE) or femtosecond-assisted laser in situ keratomileusis (FS-LASIK) and assess the biomechanical changes following the operation. Prospective, non-randomized study. A total of 80 eyes from 80 patients were treated with either SMILE or FS-LASIK. Parameters of inverse concave radius, deformation amplitude ratio 2 mm or 1 mm (DA ratio 2 mm or 1 mm), highest concavity radius (HC radius), biomechanically corrected intraocular pressure (bIOP), and central corneal thickness (CCT) measured by Corvis ST II were recorded at 1 day preoperatively, immediately after the lenticule or flap creation, during subsequent lenticule extraction or excimer laser ablation, and during follow-up at 1 week, 1 month and 3 months postoperatively. After lenticule creation, the DA ratio 2 mm or 1 mm was bigger (p < 0.05), meanwhile, CCT was thicker (p < 0.05) than with flap creation. Partial parameters changed significantly after lenticule creation or flap creation, and all parameters changed significantly after tissue removal. All parameters showed no significant differences between the two groups (p > 0.05) after operation. The variations in bIOP (ΔbIOP) after operation were significantly less than those in Δnon-contact IOP (p < 0.001) in two groups. Femtosecond laser cutting during lenticule creation has a greater impact on corneal biomechanics than flap creation. Both the femtosecond laser cutting and removal of tissue degrade corneal biomechanics; however, these effects may be predominantly a result of tissue removal. SMILE and FS-LASIK have no differences in corneal biomechanics when the same CCT is consumed. bIOP is more reliable after the operation, but further study is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderle R, Ventruba J (2013) The current state of refractive surgery. Coll Antropol 37(Suppl 1):237–241

    PubMed  Google Scholar 

  2. Tataru CP (2017) The current state of refractive surgery. Rom J Ophthalmol 61(4):237–238

    Article  Google Scholar 

  3. Wang JC, Hufnagel TJ, Buxton DF (2003) Bilateral keratectasia after unilateral laser in situ keratomileusis: a retrospective diagnosis of ectatic corneal disorder. J Cataract Refract Surg 29(10):2015–2018

    Article  Google Scholar 

  4. Roberts C (2005) Biomechanical customization: the next generation of laser refractive surgery. J Cataract Refract Surg 31(1):2–5. https://doi.org/10.1016/j.jcrs.2004.11.032

    Article  PubMed  Google Scholar 

  5. Andreassen TT, Simonsen AH, Oxlund H (1980) Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 31(4):435–441

    Article  CAS  Google Scholar 

  6. Schmack I, Dawson DG, McCarey BE, Waring GO 3rd, Grossniklaus HE, Edelhauser HF (2005) Cohesive tensile strength of human LASIK wounds with histologic, ultrastructural, and clinical correlations. J Refract Surg 21(5):433–445

    Article  Google Scholar 

  7. Dupps WJ Jr, Wilson SE (2006) Biomechanics and wound healing in the cornea. Exp Eye Res 83(4):709–720. https://doi.org/10.1016/j.exer.2006.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacRae S (2010) Thin-flap femtosecond LASIK. J Refract Surg 26(7):469–470; author reply 470. https://doi.org/10.3928/1081597X-20100512-03

    Article  PubMed  Google Scholar 

  9. Chen S, Feng Y, Stojanovic A, Jankov MR 2nd, Wang Q (2012) IntraLase femtosecond laser vs mechanical microkeratomes in LASIK for myopia: a systematic review and meta-analysis. J Refract Surg 28(1):15–24. https://doi.org/10.3928/1081597X-20111228-02

    Article  PubMed  Google Scholar 

  10. Sekundo W, Kunert KS, Blum M (2011) Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 95(3):335–339. https://doi.org/10.1136/bjo.2009.174284

    Article  PubMed  Google Scholar 

  11. Joda AA, Shervin MM, Kook D, Elsheikh A (2016) Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin 19(9):943–953

    Article  Google Scholar 

  12. Vinciguerra R, Ambrosio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32(12):803–810. https://doi.org/10.3928/1081597X-20160629-01

    Article  PubMed  Google Scholar 

  13. Lee H, Roberts CJ, Kim TI, Ambrosio R Jr, Elsheikh A, Yong Kang DS (2017) Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg 43(12):1495–1503. https://doi.org/10.1016/j.jcrs.2017.08.019

    Article  PubMed  Google Scholar 

  14. Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, Zhou X (2014) Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One 9(8):e103893. https://doi.org/10.1371/journal.pone.0103893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uzbek AK, Kamburoglu G, Mahmoud AM, Roberts CJ (2011) Change in biomechanical parameters after flap creation using the Intralase femtosecond laser and subsequent excimer laser ablation. Curr Eye Res 36(7):614–619. https://doi.org/10.3109/02713683.2010.546952

    Article  PubMed  Google Scholar 

  16. Huseynova T, Waring GO, Roberts C, Krueger RR, Tomita M (2014) Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol 157(4):885–893. https://doi.org/10.1016/j.ajo.2013.12.024

    Article  PubMed  Google Scholar 

  17. Vinciguerra R, Elsheikh A, Roberts CJ, Ambrosio R Jr, Kang DS, Lopes BT, Morenghi E, Azzolini C, Vinciguerra P (2016) Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 32(8):550–561. https://doi.org/10.3928/1081597X-20160524-01

    Article  PubMed  Google Scholar 

  18. Liu CH, Sun CC, Hui-Kang Ma D, Chien-Chieh Huang J, Liu CF, Chen HF, Hsiao CH (2014) Opaque bubble layer: incidence, risk factors, and clinical relevance. J Cataract Refract Surg 40(3):435–440. https://doi.org/10.1016/j.jcrs.2013.08.055

    Article  PubMed  Google Scholar 

  19. Son G, Lee J, Jang C, Choi KY, Cho BJ, Lim TH (2017) Possible risk factors and clinical effects of opaque bubble layer in small incision lenticule extraction (SMILE). J Refract Surg 33(1):24–29. https://doi.org/10.3928/1081597X-20161006-06

    Article  PubMed  Google Scholar 

  20. Kanellopoulos AJ, Asimellis G (2013) Digital analysis of flap parameter accuracy and objective assessment of opaque bubble layer in femtosecond laser-assisted LASIK: a novel technique. Clin Ophthalmol 7:343–351. https://doi.org/10.2147/OPTH.S39644

    Article  PubMed  PubMed Central  Google Scholar 

  21. Osman IM, Helaly HA, Abdalla M, Shousha MA (2016) Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis. BMC Ophthalmol 16:123. https://doi.org/10.1186/s12886-016-0304-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Yu M, Dai J (2016) Comparison of biomechanical effects of small incision lenticule extraction and laser-assisted subepithelial keratomileusis. Acta Ophthalmol 94(7):e586–e591. https://doi.org/10.1111/aos.13035

    Article  PubMed  Google Scholar 

  23. Reinstein DZ, Archer TJ, Randleman JB (2013) Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg 29(7):454–460. https://doi.org/10.3928/1081597X-20130617-03

    Article  PubMed  Google Scholar 

  24. Sinha Roy A, Dupps WJ Jr, Roberts CJ (2014) Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg 40(6):971–980. https://doi.org/10.1016/j.jcrs.2013.08.065

    Article  PubMed  Google Scholar 

  25. Spiru B, Kling S, Hafezi F, Sekundo W (2017) Biomechanical differences between femtosecond lenticule extraction (FLEx) and small incision lenticule extraction (SmILE) tested by 2D-extensometry in ex vivo porcine eyes. Invest Ophthalmol Vis Sci 58(5):2591–2595. https://doi.org/10.1167/iovs.16-20211

    Article  PubMed  Google Scholar 

  26. Spiru B, Kling S, Hafezi F, Sekundo W (2018) Biomechanical properties of human cornea tested by two-dimensional extensiometry ex vivo in fellow eyes: femtosecond laser-assisted LASIK versus SMILE. J Refract Surg 34(6):419–423. https://doi.org/10.3928/1081597X-20180402-05

    Article  PubMed  Google Scholar 

  27. Wang B, Zhang Z, Naidu RK, Chu R, Dai J, Qu X, Yu Z, Zhou H (2016) Comparison of the change in posterior corneal elevation and corneal biomechanical parameters after small incision lenticule extraction and femtosecond laser-assisted LASIK for high myopia correction. Cont Lens Anterior Eye 39(3):191–196. https://doi.org/10.1016/j.clae.2016.01.007

    Article  PubMed  Google Scholar 

  28. Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J (2014) Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol 252(8):1329–1335. https://doi.org/10.1007/s00417-014-2667-6

    Article  PubMed  Google Scholar 

  29. Zhang J, Zheng L, Zhao X, Xu Y, Chen S (2016) Corneal biomechanics after small-incision lenticule extraction versus Q-value-guided femtosecond laser-assisted in situ keratomileusis. J Curr Ophthalmol 28(4):181–187. https://doi.org/10.1016/j.joco.2016.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sefat SM, Wiltfang R, Bechmann M, Mayer WJ, Kampik A, Kook D (2016) Evaluation of changes in human corneas after femtosecond laser-assisted LASIK and small-incision lenticule extraction (SMILE) using non-contact tonometry and ultra-high-speed camera (Corvis ST). Curr Eye Res 41(7):917–922. https://doi.org/10.3109/02713683.2015.1082185

    Article  PubMed  Google Scholar 

  31. Mastropasqua L, Calienno R, Lanzini M, Colasante M, Mastropasqua A, Mattei PA, Nubile M (2014) Evaluation of corneal biomechanical properties modification after small incision lenticule extraction using Scheimpflug-based noncontact tonometer. Biomed Res Int 2014:290619. https://doi.org/10.1155/2014/290619

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kamiya K, Shimizu K, Igarashi A, Kobashi H, Sato N, Ishii R (2014) Intraindividual comparison of changes in corneal biomechanical parameters after femtosecond lenticule extraction and small-incision lenticule extraction. J Cataract Refract Surg 40(6):963–970. https://doi.org/10.1016/j.jcrs.2013.12.013

    Article  PubMed  Google Scholar 

  33. Agca A, Ozgurhan EB, Demirok A, Bozkurt E, Celik U, Ozkaya A, Cankaya I, Yilmaz OF (2014) Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: a prospective fellow eye study. Cont Lens Anterior Eye 37(2):77–80. https://doi.org/10.1016/j.clae.2013.05.003

    Article  PubMed  Google Scholar 

  34. Wang D, Liu M, Chen Y, Zhang X, Xu Y, Wang J, To CH, Liu Q (2014) Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg 30(10):702–707. https://doi.org/10.3928/1081597X-20140903-09

    Article  PubMed  Google Scholar 

  35. Kanellopoulos AJ (2018) Comparison of corneal biomechanics after myopic small-incision lenticule extraction compared to LASIK: an ex vivo study. Clin Ophthalmol 12:237–245. https://doi.org/10.2147/OPTH.S153509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eliasy A, Chen KJ, Vinciguerra R, Maklad O, Vinciguerra P, Ambrosio R Jr, Roberts CJ, Elsheikh A (2018) Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res 175:98–102. https://doi.org/10.1016/j.exer.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  37. Ang M, Chaurasia SS, Angunawela RI, Poh R, Riau A, Tan D, Mehta JS (2012) Femtosecond lenticule extraction (FLEx): clinical results, interface evaluation, and intraocular pressure variation. Invest Ophthalmol Vis Sci 53(3):1414–1421. https://doi.org/10.1167/iovs.11-8808

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bai Ji or Liu Ting.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Daping Hospital and the Research Institute of Surgery of the Army Medical University (Chong Qing, China). The experiment followed the Helsinki declaration and signed informed consent was obtained from the patients. The clinical registration number is ChiCTR1800015346.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, K., Liu, L., Yu, T. et al. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci 35, 599–609 (2020). https://doi.org/10.1007/s10103-019-02854-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02854-w

Keywords

Navigation