Skip to main content

Advertisement

Log in

Effect of 650-nm low-level laser irradiation on c-Jun, c-Fos, ICAM-1, and CCL2 expression in experimental periodontitis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

A Correction to this article was published on 10 December 2019

This article has been updated

Abstract

This study was designed to investigate the effect of 650-nm low-level laser irradiation (LLLI) as an adjunctive treatment of experimental periodontitis. To investigate possible LLLI-mediated anti-inflammatory effects, we utilized an experimental periodontitis (EP) rat model and analyzed c-Jun, c-Fos, ICAM-1, and CCL2 gene expressions on PB leukocytes and in the gingival tissue. Total RNA was isolated from the gingivae and peripheral blood (PB) leukocytes of normal, EP, scaling, and root planing (SRP)-treated EP and LLLI + SRP-treated EP rats, and gene expressions were analyzed by real-time PCR. The productions of c-Jun, c-Fos, ICAM-1, and CCL2 in gingivae were analyzed immunohistochemically. Tartrate-resistant acid phosphatase (TRAP) staining was used to determine osteoclast activity in alveolar bone. The c-Jun and ICAM-1 messenger RNA (mRNA) levels were significantly decreased in the EP rat gingival tissue treated by SRP + LLLI than by SRP, the c-Jun, ICAM-1, and c-Fos mRNA levels on PB leukocytes reduced after LLLI treatment but did not show any significant differences in both groups. There was no significant difference in CCL2 mRNA levels on PB leukocytes and in gingivae between the SRP + LLLI and the SRP groups. The c-Fos mRNA levels in gingivae did not show significant difference in both groups. Immunohistochemistry showed that the CCL2, ICAM-1, c-Jun, and c-Fos productions were significantly reduced in rats of the SRP + LLLI group compared with the only SRP group. LLLI significantly decreased the number of osteoclasts as demonstrated by TRAP staining. The 650-nm LLLI might be a useful treatment modality for periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 10 December 2019

    After publication of our article [1] we realized that we had not acknowledged that some of the text overlaps with a previous publication [2]. We apologize to readers for this error.

References

  1. Erdemir EO, Hendek MK, Keceli HG, Apan TZ (2015) Crevicular fluid levels of interleukin-8, interleukin-17 and soluble intercellular adhesionmolecule-1 after regenerative periodontal therapy. Eur J Dent 9:60–65

    PubMed  PubMed Central  Google Scholar 

  2. Van der Weijden GA, Timmerman MF (2002) A systematic review on the clinical efficacy of subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol 29(Suppl 3):55–71 discussion 90-1

    PubMed  Google Scholar 

  3. Heitz-Mayfield LJ, Lang NP (2013) Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts. Periodontol 62:218–231

    Google Scholar 

  4. Adriaens PA, Adriaens LM (2004) Effects of nonsurgical periodontal therapy on hard and soft tissues. Periodontol 36:121–145

    Google Scholar 

  5. Obeid PR, D’Hoore W, Bercy P (2004) Comparative clinical responses related to the use of various periodontal instrumentation. J Clin Periodontol 31:193–199

    PubMed  Google Scholar 

  6. Lamont RJ, Yilmaz O (2002) In or out: the invasiveness of oral bacteria. Periodontol 30:61–69

    Google Scholar 

  7. Johnson JD, Chen R, Lenton PA, Zhang G, Hinrichs JE, Rudney JD (2008) Persistence of extracrevicular bacterial reservoirs after treatment of aggressive periodontitis. J Periodontol 79:2305–2312

    PubMed  PubMed Central  Google Scholar 

  8. Matia JI, Bissada NF, Maybury JE, Ricchetti P (1986) Efficiency of scaling of the molar furcation area with and without surgical access. Int J Periodontics Restorative Dent 6:24–35

    CAS  PubMed  Google Scholar 

  9. Moritz A, Gutknecht N, Doertbudak O, Goharkhay K, Schoop U, Schauer P, Sperr W (1997) Bacterial reduction in periodontal pockets through irradiation with a diode laser: a pilot study. J Clin Laser Med Surg 15:33–37

    CAS  PubMed  Google Scholar 

  10. Thunell DH, Tymkiw KD, Johnson GK, Joly S, Burnell KK, Cavanaugh JE, Brogden KA, Guthmiller JM (2010) A multiplex immunoassay demonstrates reductions in gingival crevicular fluid cytokines following initial periodontal therapy. J Periodontal Res 45:148–152

    CAS  PubMed  Google Scholar 

  11. Buck CA (1992) Immunoglobulin superfamily: structure, function and relationship to other receptor molecules. Semin Cell Biol 3:179–188

    CAS  PubMed  Google Scholar 

  12. Hayashi J, Saito I, Ishikawa I, Miyasaka N (1994) Effects of cytokines and periodontopathic bacteria on the leukocyte function-associated antigen 1/intercellular adhesion molecule 1 pathway in gingival fibroblasts in adult periodontitis. Infect Immun 62:5205–5212

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozawa A, Tada H, Tamai R, Uehara A, Watanabe K, Yamaguchi T, Shimauchi H, Takada H, Sugawara S (2003) Expression of IL-2 receptor beta and gamma chains by human gingival fibroblasts and up-regulation of adhesion to neutrophils in response to IL-2. J Leukoc Biol 74:352–359

    CAS  PubMed  Google Scholar 

  14. Yu X, Antoniades HN, Graves DT (1993) Expression of monocyte chemoattractant protein 1 in human inflamed gingival tissues. Infect Immun 61:4622–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    CAS  PubMed  Google Scholar 

  16. Kato S, Sugimura N, Nakashima K, Nishihara T, Kowashi Y (2005) Actinobacillus actinomycetemcomitans induces apoptosis in human monocytic THP-1 cells. J Med Microbiol 54:293–298

    CAS  PubMed  Google Scholar 

  17. Zappa U, Reinking-Zappa M, Graf H, Espeland M (1991) Cell populations and episodic periodontal attachment loss in humans. J Clin Periodontol 18:508–515

    CAS  PubMed  Google Scholar 

  18. Gutiérrez-Venegas G, Castillo-Alemán R (2008) Characterization of the transduction pathway involved in c-Fos and c-Jun expression induced by Aggregatibacter actinomycetemcomitans lipopolysaccharides in human gingival fibroblasts. Int Immunopharmacol 8:1513–1523

    PubMed  Google Scholar 

  19. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    CAS  PubMed  Google Scholar 

  20. Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes 7:2135–2148

    CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    CAS  Google Scholar 

  22. Chang PC, Chien LY, Ye Y, Kao MJ (2013) Irradiation by light-emitting diode light as an adjunct to facilitate healing of experimental periodontitis in vivo. J Periodontal Res 48:135–143

    CAS  PubMed  Google Scholar 

  23. Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8:437–441

    CAS  PubMed  Google Scholar 

  24. Harada H, Kukita T, Kukita A, Iwamoto Y, Iijima T (1998) Involvement of lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 in osteoclastogenesis: a possible role in direct interaction between osteoclast precursors. Endocrinology 139:3967–3975

    CAS  PubMed  Google Scholar 

  25. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    CAS  Google Scholar 

  26. Modur V, Zimmerman GA, Prescott SM, McIntyre TM (1996) Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem 271:13094–13102

    CAS  PubMed  Google Scholar 

  27. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    CAS  PubMed  Google Scholar 

  28. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB (1995) H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem 270:18966–18974

    CAS  PubMed  Google Scholar 

  29. Graves DT, Delima AJ, Assuma R, Amar S, Oates T, Cochran D (1998) Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. J Periodontol 69:1419–1425

    CAS  PubMed  Google Scholar 

  30. Goto KT, Kajiya H, Nemoto T, Tsutsumi T, Tsuzuki T, Sato H, Okabe K (2011) Hyperocclusion stimulates osteoclastogenesis via CCL2 expression. J Dent Res 90:793–798

    CAS  PubMed  Google Scholar 

  31. Nelken NA, Coughlin SR, Gordon D, Wilcox JN (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614

    CAS  PubMed  Google Scholar 

  33. Antoniades HN, Neville-Golden J, Galanopoulos T, Kradin RL, Valente AJ, Graves DT (1992) Expression of monocyte chemoattractant protein 1 mRNA in human idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 89:5371–5375

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Graves DT, Barnhill R, Galanopoulos T, Antoniades HN (1992) Expression of monocyte chemotactic protein-1 in human melanoma in vivo. Am J Pathol 140:9–14

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Villiger PM, Terkeltaub R, Lotz M (1992) Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol 149:722–727

    CAS  PubMed  Google Scholar 

  36. Yu X, Barnhill RL, Graves DT (1994) Expression of monocyte chemoattractant protein-1 in delayed type hypersensitivity reactions in the skin. Lab Investig 71:226–235

    CAS  PubMed  Google Scholar 

  37. Zhang L, Zhao J, Kuboyama N, Abiko Y (2011) Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovia via a chemokine signaling pathway. Lasers Med Sci 26:707–717

    PubMed  Google Scholar 

  38. Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437:281–285

    CAS  PubMed  Google Scholar 

  39. Yoshioka K, Deng T, Cavigelli M, Karin M (1995) Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc Natl Acad Sci U S A 92:4972–4976

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Watanabe A, Takeshita A, Kitano S, Hanazawa S (1996) CD14-mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Infect Immun 64:4488–4494

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) C-Fos: key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448

    CAS  PubMed  Google Scholar 

  42. Hounoki H, Sugiyama E, Mohamed SG, Shinoda K, Taki H, Abdel-Aziz HO, Maruyama M, Kobayashi M, Miyahara T (2008) Activation of peroxisome proliferator-activated receptor gamma inhibits TNF-alpha-mediated osteoclast differentiation in human peripheral monocytes in part via suppression of monocyte chemoattractant protein-1 expression. Bone 42:765–774

    CAS  PubMed  Google Scholar 

  43. Figuero E, Sánchez-Beltrán M, Cuesta-Frechoso S, Tejerina JM, del Castro JA, Gutiérrez JM, Herrera D, Sanz M (2011) Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. J Periodontol 82:1469–1477

    CAS  PubMed  Google Scholar 

  44. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59:783–836

    CAS  PubMed  Google Scholar 

  45. Meikle MC, Heath JK, Reynolds JJ (1986) Advances in understanding cell interactions in tissue resorption. Relevance to the pathogenesis of periodontal diseases and a new hypothesis. J Oral Pathol 15:239–250

    CAS  PubMed  Google Scholar 

  46. Funk JO, Kruse A, Neustock P, Kirchner H (1993) Helium-neon laser irradiation induces effects on cytokine production at the protein and the mRNA level. Exp Dermatol 2:75–83

    CAS  PubMed  Google Scholar 

  47. Wang H, Deng J, Tu W, Zhang L, Chen H, Wu X, Li Y, Sha H (2016) The hematologic effects of low intensity 650 nm laser irradiation on hypercholesterolemia rabbits. Am J Transl Res 8(5):2293–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yilmaz S, Kuru B, Kuru L, Noyan U, Argun D, Kadir T (2002) Effect of gallium arsenide diode laser on human periodontal disease: a microbiological and clinical study. Lasers Surg Med 30(1):60–66

    PubMed  Google Scholar 

Download references

Acknowledgements

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Wang had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. We would like to acknowledge Jinbao Liu, Zhihe Dai, Yuzhu Mu, and Xiaomin Xu for their excellent technical assistances.

Funding

This study was supported by grants from the Natural Science Foundation of Dental School of Tianjin Medical University (No. 2014YKY03).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Yonglan Wang.

Acquisition of data: Lin Zhang, Wenlei Chen, Haidong Li, Xiaoxi Dong, Xiaohui Han, Gang Bao, Li Xiao, Pengfei Gao.

Analysis and interpretation of data: Yonglan Wang, Lin Zhang, Yingxin Li, Wei Hong, Haidong Li.

Manuscript preparation: Lin Zhang.

Statistical analysis: Zhuang Cui, Lin Zhang, Haidong Li.

Corresponding author

Correspondence to Yonglan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, W., Li, Y. et al. Effect of 650-nm low-level laser irradiation on c-Jun, c-Fos, ICAM-1, and CCL2 expression in experimental periodontitis. Lasers Med Sci 35, 31–40 (2020). https://doi.org/10.1007/s10103-018-2662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2662-y

Keywords

Navigation