Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology

  • Thomas Drost
  • Susanne Reimann
  • Matthias Frentzen
  • Jörg MeisterEmail author
Original Article


Challenges especially in the minimal invasive restorative treatment of teeth require further developments of composite polymerization techniques. These include, among others, the securing of a complete polymerization with moderate thermal stress for the pulp. The aim of this study is to compare current light curing sources with a blue diode laser regarding curing depth and heat generation during the polymerization process. A diode laser (445 nm), a LED, and a halogen lamp were used for polymerizing composite resins. The curing depth was determined according to the norm ISO 4049. Laser output powers of 0.1, 0.5, 1, and 2 W were chosen. The laser beam diameter was adapted to the glass rod of the LED and the halogen lamp (8 mm). The irradiation time was fixed at 40 s. To ascertain ΔT values, the surface and ground area temperatures of the cavities were simultaneously determined during the curing via a thermography camera and a thermocouple. The curing depths for the LED (3.3 mm), halogen lamp (3.1 mm) and laser(0.5/1 W) (3/3.3 mm) showed no significant differences (p < 0.05). The values of ΔTsurface as well as ΔTground also showed no significant differences among LED, halogen lamp, and laser(1 W). The ΔTsurface values were 4.1LED, 4.3halogen lamp, and 4.5 °C for the laser while the ΔTground values were 2.7LED, 2.6halogen lamp, and 2.9 °C for the laser. The results indicate that the blue diode laser (445 nm) is a feasible alternative for photopolymerization of complex composite resin restorations in dentistry by the use of selected laser parameters.


Restorative dentistry Photopolymerization Composite resin Blue diode laser Curing depth Polymerization temperature 



The authors would like to thank Dentsply Sirona Germany for providing the blue diode laser system.


This study was funded under the research budget of AMLaReBO (Center of Applied Medical Laser Research and Biomedical Optics) at Bonn University.

Compliance with ethical standards

Materials sciences

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Materials sciences

Informed consent

Materials sciences


  1. 1.
    Sgolastra F, Severino M, Gatto R, Monaco A (2013) Effectiveness of diode laser as adjunctive therapy to scaling root planning in the treatment of chronic periodontitis: a meta-analysis. Lasers Med Sci 28(5):1393–1402. CrossRefPubMedGoogle Scholar
  2. 2.
    Saydjari Y, Kuypers T, Gutknecht N (2016) Laser application in dentistry: irradiation effects of Nd:YAG 1064 nm and diode 810 nm and 980 nm in infected root canals – a literature overview. Biomed Res Int 2016:Article ID 8421656:1–10. CrossRefGoogle Scholar
  3. 3.
    Reichelt J, Winter J, Meister J, Frentzen M, Kraus D (2017) A novel blue light laser system for surgical applications in dentistry: evaluation of specific laser-tissue interactions in monolayer cultures. Clin Oral Investig 21(4):985–994. CrossRefPubMedGoogle Scholar
  4. 4.
    Cook WD (1982) Spectral distributions of dental photopolymerization sources. J Dent Res 61(12):1436–1438. CrossRefPubMedGoogle Scholar
  5. 5.
    Stansbury JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Dent 12(6):300–308. CrossRefPubMedGoogle Scholar
  6. 6.
    Leonard DL, Charlton DG, Roberts HW, Cohen ME (2002) Polymerization efficiency of LED curing lights. J Esthet Restor Dent 14(5):286–295. CrossRefPubMedGoogle Scholar
  7. 7.
    Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations – a meta-analysis. J Adhes Dent 14(5):407–431. CrossRefPubMedGoogle Scholar
  8. 8.
    Jandt KD, Mills RW (2013) A brief history of LED photopolymerization. Dent Mater 29(6):605–617. CrossRefPubMedGoogle Scholar
  9. 9.
    Binnewies M (1986) Chemie in Glühlampen. Chemie Unserer Zeit 20(5):141–145 [German]. CrossRefGoogle Scholar
  10. 10.
    Friedman J (1989) Variability of lamp characteristics in dental curing lights. J Esthet Dent 1(6):189–190. CrossRefPubMedGoogle Scholar
  11. 11.
    Jandt KD, Mills RW, Blackwell GB, Ashworth SH (2000) Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater 16(1):41–47. CrossRefPubMedGoogle Scholar
  12. 12.
    Rueggeberg FA (2011) State-of-the-art: dental photocuring – a review. Dent Mater 27(1):39–52. CrossRefPubMedGoogle Scholar
  13. 13.
    Anić I, Pavelić B, Perić B, Matsumoto K (1996) In vitro pulp chamber temperature rises associated with the argon laser polymerization of composite resin. Lasers Surg Med 19(4):438–444.<438::AID-LSM9>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  14. 14.
    Blankenau RJ, Powell GL, Kelsey WP, Barkmeier WW (1991) Post polymerization strength values of an argon laser cured resin. Lasers Surg Med 11(5):471–474. CrossRefPubMedGoogle Scholar
  15. 15.
    Kelsey WP 3rd, Blankenau RJ, Powell GL, Barkmeier WW, Cavel WT, Whisenant BK (1989) Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med 9(6):623–627. CrossRefPubMedGoogle Scholar
  16. 16.
    Kelsey WP, Blankenau RJ, Powell GL, Barkmeier WW, Stormberg EF (1992) Power and time requirements for use of the argon laser to polymerize composite resins. J Clin Laser Med Surg 10(4):273–278. CrossRefPubMedGoogle Scholar
  17. 17.
    Powell GL, Kelsey WP, Blankenau RJ, Barkmeier WW (1989) The use of an argon laser for polymerization of composite resin. J Esthet Dent 1(1):34–37. CrossRefPubMedGoogle Scholar
  18. 18.
    Potts TV, Petrou A (1990) Laser photopolymerization of dental materials with potential endodontic applications. J Endod 16(6):265–268. CrossRefPubMedGoogle Scholar
  19. 19.
    Rode KM, de Freitas PM, Lloret PR, Powell LG, Turbino ML (2009) Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 24(1):87–92. CrossRefPubMedGoogle Scholar
  20. 20.
    Rueggeberg FA, Ergle JW, Mettenburg DJ (2000) Polymerization depths of contemporary light-curing units using microhardness. J Esthet Dent 12(6):340–349CrossRefGoogle Scholar
  21. 21.
    Ernst CP (2005) Aktuelle klinische Aspekte der Lichtpolymerisation. ZWR-Das Deutsche Zahnärzteblatt 114(11):513–517 [German]. CrossRefGoogle Scholar
  22. 22.
    Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19(4):515–530. CrossRefPubMedGoogle Scholar
  23. 23.
    Ericson D, Kidd E, McComb D, Mjör I, Noack MJ (2003) Minimally invasive dentistry—concepts and techniques in cariology. Oral Health Prev Dent 1(1):59–72PubMedGoogle Scholar
  24. 24.
    Alonso V, Darriba IL, Caserio M (2017) Retrospective evaluation of posterior composite resin sandwich restorations with Herculite XRV: 18-year findings. Quintessence Int 48(2):93–101. CrossRefPubMedGoogle Scholar
  25. 25.
    Małkiewicz K, Wychowański P, Olkowska-Truchanowicz J, Tykarska M, Czerwiński M, Wilczko M, Owoc A (2017) Uncompleted polymerization and cytotoxicity of dental restorative materials as potential health risk factors. Ann Agric Environ Med 24(4):618–623. CrossRefPubMedGoogle Scholar
  26. 26.
    ISO 4049 (2009) Dentistry - polymer-based restorative materials. EN ISO. International Organization for Standardization, Geneva, Switzerland, p 4049Google Scholar
  27. 27.
    Rueggeberg FA, Cole MA, Looney SW, Vickers A, Swift EJ (2009) Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent 21(1):43–61. CrossRefPubMedGoogle Scholar
  28. 28.
    Price RB, Rueggeberg FA, Harlow J, Sullivan B (2016) Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Investig 20(7):1699–1707. CrossRefPubMedGoogle Scholar
  29. 29.
    Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28(5):521–528. CrossRefPubMedGoogle Scholar
  30. 30.
    DeWald JP, Ferracane JL (1987) A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 66(3):727–730. CrossRefPubMedGoogle Scholar
  31. 31.
    Lussi A, Zimmerli B, Aregger T, Portmann P (2005) Composite curing with new LED equipment. Schweiz Monatsschr Zahnmed 115(12):1182–1187 [German]PubMedGoogle Scholar
  32. 32.
    Halvorson RH, Erickson RL, Davidson CL (2002) Energy dependent polymerization of resin-based composite. Dent Mater 18(6):463–469. CrossRefPubMedGoogle Scholar
  33. 33.
    Steinhaus J, Hausnerova B, Haenel T, Großgarten M, Möginger B (2014) Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA). Dent Mater 30(3):372–380. CrossRefPubMedGoogle Scholar
  34. 34.
    Shortall AC, Wilson HJ, Harrington E (1995) Depth of cure of radiation-activated composite restoratives-influence of shade and opacity. J Oral Rehabil 22(5):337–342. CrossRefPubMedGoogle Scholar
  35. 35.
    Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I (2005) Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 72(2):260–267. CrossRefPubMedGoogle Scholar
  36. 36.
    Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27(1):29–38. CrossRefPubMedGoogle Scholar
  37. 37.
    Manhart J (2010) Neues Konzept zum Ersatz von Dentin in der kompositbasierten Seitenzahnversorgung. ZWR-Das Deutsche Zahnärzteblatt 119(03):118–125 [German]. CrossRefGoogle Scholar
  38. 38.
    Czichos H, Skotzki B, Werkstoffe SFG (2012) In: Akademischer Verein Hütte EV, Czichos H, Hennecke M (eds) Hütte – Das Ingenieurwissen, 34rd edn. Springer, Berlin, Heidelberg. CrossRefGoogle Scholar
  39. 39.
    Lancaster P, Brettle D, Carmichael F, Clerehugh V (2017) In-vitro thermal maps to characterize human dental enamel and dentin. Front Physiol 8(461):1–8. CrossRefGoogle Scholar
  40. 40.
    Gente M, Apel E, Dikmen G, Hobeck C, Schipper H, Schmitz K, Wolkenhauer V (2007) Der Einfluss des Polymerisationslampentyps auf die Aushärtungstiefe dentaler Kompositfüllungen. ZWR-Das Deutsche Zahnärzteblatt 116(9):408–412 [German]. CrossRefGoogle Scholar
  41. 41.
    Moore BK, Platt JA, Borges G, Chu TG, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33(4):408–412. CrossRefPubMedGoogle Scholar
  42. 42.
    Price RB, Derand T, Sedarous M, Andreou P, Loney RW (2000) Effect of distance on the power density from two light guides. J Esthet Dent 12(6):320–327. CrossRefPubMedGoogle Scholar
  43. 43.
    Uhl A, Mills RW, Jandt KD (2003) Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 24(10):1809–1820. CrossRefPubMedGoogle Scholar
  44. 44.
    Staehle HJ, Wolff D, Frese C (2015) More conservative dentistry: clinical long-term results of direct composite resin restorations. Quintessence Int 46(5):373–380. CrossRefPubMedGoogle Scholar
  45. 45.
    Ebert J, Frankenberger R, Petschelt A (2012) A novel approach for filling tunnel-prepared teeth with composites of two different consistencies: a case presentation. Quintessence Int 43(2):93–96PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Thomas Drost
    • 1
  • Susanne Reimann
    • 2
  • Matthias Frentzen
    • 1
  • Jörg Meister
    • 1
    Email author
  1. 1.Department of Operative and Preventive DentistryBonn University, Dental FacultyBonnGermany
  2. 2.Oral TechnologyBonn University, Dental FacultyBonnGermany

Personalised recommendations