Skip to main content

Advertisement

Log in

The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation therapy (PBMT) has been demonstrated as regulating osteoblast proliferation. MicroRNAs (miRNAs) are involved in various pathophysiologic processes in osteoblast, but the role of miRNAs in the PBMT-based promotion of osteoblast proliferation remains unclear. This study aimed to investigate the effects of PBMT treatment (3.75 J/cm2) on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via the miR-503/Wnt3a pathway; meanwhile, detect the expressions of miR-503 and Wnt3a after PBMT treatment and the role of miR-503 in regulating Wnt signaling molecules Wnt3a, β-catenin, Runx2, apoptotic proteins caspase-3, and Bcl-2 in vitro. The PBMT parameters were as follows: 808 nm continuous wavelength, 0.401 W output power, 0.042 W/cm2 power density, 9.6 cm2 spot size, 36 J energy, 3.75 J/cm2 energy density, 90 s irradiation for three times per 12 h, 14.5 cm distance of the laser source and the angle of divergence of the laser beam was 7°. In our present study, the target relationship was predicted and verified by bioinformatics analysis and luciferase reporter assays. Gene mRNA and protein expressions were examined by qPCR and western blot analysis. The MTT method was used to evaluate the effect of miR-503 on MC3T3-E1 cells proliferation. And cell apoptosis was examined by flow cytometry. The results showed that PBMT treatment reduced the expression of miR-503 and increased the level of Wnt3a (p < 0.01). Bioinformatics analysis and luciferase reporter assays revealed that Wnt3a was a target of miR-503, and Wnt3a was regulated by miR-503. Furthermore, miR-503 was found to functionally inhibit proliferation and promote apoptosis (p < 0.01). And during this process, Wnt3a, β-catenin, Runx2, and Bcl-2 expressions were significantly inhibited (p < 0.01); however, caspase-3 level was upregulated (p < 0.01). These results suggest that miR-503 plays a role in osteoblast proliferation and apoptosis in response to PBMT, which is potentially amenable to therapeutic manipulation for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karlekar A, Bharati S, Saxena R et al (2015) Assessment of feasibility and efficacy of class IV laser therapy for postoperative pain relief in off-pump coronary artery bypass surgery patients: a pilot study. Ann Card Anaesth 18(3):317–322. https://doi.org/10.4103/0971-9784.159800

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prasad RS, Pai A (2013) Assessment of immediate pain relief with laser treatment in recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 116(2):189–193. https://doi.org/10.1016/j.oooo.2013.02.011

    Article  Google Scholar 

  3. Li WH, Fassih A, Binner C et al (2018) Low-level red LED light inhibits hyperkeratinization and inflammation induced by unsaturated fatty acid in an in vitro model mimicking acne. Lasers Surg Med 50(2):158–165. https://doi.org/10.1002/lsm.22747

    Article  CAS  PubMed  Google Scholar 

  4. Hwang K, Kim SG, Kim DJ et al (2005) Laser welding of rat’s facial nerve. J Craniofac Surg 16(6):1102–1106

    Article  PubMed  Google Scholar 

  5. Aliasl J, Barikbin B, Khoshzaban F et al (2015) Effect of Arnebia euchroma ointment on post-laser wound healing in rats. J Cosmet Laser Ther 17(1):41–45. https://doi.org/10.3109/14764172.2014.968583

    Article  PubMed  Google Scholar 

  6. Chaves ME, Araujo AR, Piancastelli AC et al (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623

    Article  PubMed  PubMed Central  Google Scholar 

  7. DiVito EE, Benjamin SD, LeBeau J (2014) Advances in laser dentistry: expanding beyond periodontal care. Compend Contin Educ Dent 35(10):734–735

    PubMed  Google Scholar 

  8. Kang Y, Rabie AB, Wong RW (2014) A review of laser applications in orthodontics. Int J Orthod Milwaukee 25(1):47–56

    PubMed  Google Scholar 

  9. Saito A, Morimoto Y, Yoshimatsu T et al (2012) Present and future for LLLT in the area of orthopedics. Masui 61(7):706–717

    PubMed  Google Scholar 

  10. Pagin MT, de Oliveira FA, Oliveira RC et al (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59. https://doi.org/10.1007/s10103-012-1238-5

    Article  PubMed  Google Scholar 

  11. Usumez A, Cengiz B, Oztuzcu S et al (2014) Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing. Lasers Med Sci 29(6):1807–1813. https://doi.org/10.1007/s10103-013-1336-z

    Article  PubMed  Google Scholar 

  12. Peplow PV, Chung TY, Ryan B et al (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29(5):285–304. https://doi.org/10.1089/pho.2010.2846

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, Chen Y, Dong S et al (2017) Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway. Lasers Med Sci 32(7):1489–1496. https://doi.org/10.1007/s10103-017-2269-8

    Article  PubMed  Google Scholar 

  14. Imai H, Matsubayashi S, Santo ML et al (1994) A 85-year-old right-handed woman with aphasia and left hemiparesis. No to shinkei 46(4):397–405

    CAS  PubMed  Google Scholar 

  15. Wang J, Huang W, Wu Y et al (2012) MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells Dev 21(13):2508–2519. https://doi.org/10.1089/scd.2011.0695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ozawa Y, Shimizu N, Kariya G et al (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22(4):347–354

    Article  CAS  PubMed  Google Scholar 

  17. Schubert MM, Eduardo FP, Guthrie KA et al (2007) A phase III randomized double-blind placebo-controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support Care Cancer 15(10):1145–1154. https://doi.org/10.1007/s00520-007-0238-7

    Article  PubMed  Google Scholar 

  18. Wang X, Tang S, Le SY et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7):e2557. https://doi.org/10.1371/journal.pone.0002557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774. https://doi.org/10.1016/j.cell.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123(7):1267–1277. https://doi.org/10.1016/j.cell.2005.10.040

    Article  CAS  PubMed  Google Scholar 

  21. Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S A 105(35):13021–13026. https://doi.org/10.1073/pnas.0803304105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arfat Y, Xiao WZ, Ahmad M et al (2015) Role of microRNAs in osteoblasts differentiation and bone disorders. Curr Med Chem 22(6):748–758

    Article  CAS  PubMed  Google Scholar 

  23. Papaioannou G, Mirzamohammadi F, Kobayashi T (2014) MicroRNAs involved in bone formation. Cell Mol Life Sci 71(24):4747–4761. https://doi.org/10.1007/s00018-014-1700-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pi C, Li YP, Zhou X et al (2015) The expression and function of microRNAs in bone homeostasis. Front Biosci 20:119–138

    Article  CAS  Google Scholar 

  25. Liu L, Liu M, Li R et al (2017) MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 41(2):112–123. https://doi.org/10.1002/cbin.10704

    Article  CAS  PubMed  Google Scholar 

  26. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779. https://doi.org/10.1038/nrm3470

    Article  CAS  PubMed  Google Scholar 

  27. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118(2):421–428. https://doi.org/10.1172/JCI33612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weivoda MM, Ruan M, Hachfeld CM et al (2016) Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res 31(1):65–75. https://doi.org/10.1002/jbmr.2599

    Article  CAS  PubMed  Google Scholar 

  29. Bennett CN, Ouyang H, Ma YL et al (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22(12):1924–1932. https://doi.org/10.1359/jbmr.070810

    Article  CAS  PubMed  Google Scholar 

  30. Boland GM, Perkins G, Hall DJ et al (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem Suppl 93(6):1210–1230. https://doi.org/10.1002/jcb.20284

    Article  CAS  Google Scholar 

  31. Keupp K, Beleggia F, Kayserili H et al (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574. https://doi.org/10.1016/j.ajhg.2013.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aleksic V, Aoki A, Iwasaki K et al (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25(4):559–569. https://doi.org/10.1007/s10103-010-0761-5

    Article  PubMed  Google Scholar 

  33. Hirata S, Kitamura C, Fukushima H et al (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem Suppl 111(6):1445–1452. https://doi.org/10.1002/jcb.22872

    Article  CAS  Google Scholar 

  34. Feng J, Sun Q, Liu L et al (2015) Photoactivation of TAZ via Akt/GSK3beta signaling pathway promotes osteogenic differentiation. Int J Biochem Cell Biol 66:59–68. https://doi.org/10.1016/j.biocel.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  35. Schindl A, Schindl M, Pernerstorfer-Schon H et al (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326

    CAS  PubMed  Google Scholar 

  36. Khori V, Alizadeh AM, Gheisary Z et al (2016) The effects of low-level laser irradiation on breast tumor in mice and the expression of Let-7a, miR-155, miR-21, miR125, and miR376b. Lasers Med Sci 31(9):1775–1782. https://doi.org/10.1007/s10103-016-2049-x

    Article  PubMed  Google Scholar 

  37. Li L, Sarver AL, Khatri R et al (2014) Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol 234(4):488–501. https://doi.org/10.1002/path.4407

    Article  CAS  PubMed  Google Scholar 

  38. Long J, Ou C, Xia H et al (2015) MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol 36(11):8697–8702. https://doi.org/10.1007/s13277-015-3623-8

    Article  CAS  PubMed  Google Scholar 

  39. Zhou B, Ma R, Si W et al (2013) MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 333(2):159–169. https://doi.org/10.1016/j.canlet.2013.01.028

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Li A, Zhang P et al (2016) Increased expression of microRNA-503 and reduced expression of kangai-1 in B-cell non-Hodgkin’s lymphoma. Exp Ther Med 11(3):917–922. https://doi.org/10.3892/etm.2016.2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y, Deng L, Zhao D et al (2016) MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med 20(3):495–505. https://doi.org/10.1111/jcmm.12754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen C, Cheng P, Xie H et al (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347. https://doi.org/10.1002/jbmr.2032

    Article  CAS  PubMed  Google Scholar 

  43. Jing D, Zhai M, Tong S et al (2016) Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/beta-catenin signaling-associated mechanism. Sci Rep 6:32045. https://doi.org/10.1038/srep32045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Yin X, Huang L et al (2017) Relationships among bone quality, implant osseointegration, and Wnt signaling. J Dent Res 96(7):822–831. https://doi.org/10.1177/0022034517700131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mouraret S, Hunter DJ, Bardet C et al (2014) Improving oral implant osseointegration in a murine model via Wnt signal amplification. J Clin Periodontol 41(2):172–180. https://doi.org/10.1111/jcpe.12187

    Article  CAS  PubMed  Google Scholar 

  46. Jullien N, Maudinet A, Leloutre B et al (2012) Downregulation of ErbB3 by Wnt3a contributes to wnt-induced osteoblast differentiation in mesenchymal cells. J Cell Biochem Suppl 113(6):2047–2056. https://doi.org/10.1002/jcb.24076

    Article  CAS  Google Scholar 

  47. Karner CM, Esen E, Chen J et al (2016) Wnt protein signaling reduces nuclear acetyl-CoA levels to suppress gene expression during osteoblast differentiation. J Biol Chem 291(25):13028–13039. https://doi.org/10.1074/jbc.M115.708578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kramer I, Halleux C, Keller H et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30(12):3071–3085. https://doi.org/10.1128/MCB.01428-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin HR, Islam R, Yoon WJ et al (2016) Pin1-mediated modification prolongs the nuclear retention of beta-catenin in Wnt3a-induced osteoblast differentiation. J Biol Chem 291(11):5555–5565. https://doi.org/10.1074/jbc.M115.698563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help from Dr. Meihua Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, C., Xi, S. et al. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 34, 607–614 (2019). https://doi.org/10.1007/s10103-018-2636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2636-0

Keywords

Navigation