Skip to main content

Advertisement

Log in

Effects of the extracorporeal shock wave therapy on the skin: an experimental study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Extracorporeal shock wave therapy (ESWT) has been extensively studied for its multiple biological properties, and although it is widely applied in esthetical procedures, little is known about its effects on the epidermis and dermis. In this study, a histological and immunohistochemical study of the effects of ESWT was performed on rat skin. Forty-five female rats were treated with one or two sessions of ESWT and sacrificed on days 1, 7, 14, and 21 after treatment. The samples were histologically processed and then morphometric analyses were performed to assess the epidermis, dermis, and subcutaneous fat tissue thickness. Immunohistochemical reactions were also performed against the antibodies: basic fibroblastic growth factor (FGF2), its receptor (FGFR1), and α-smooth muscle actin. Slides were scanned and digitally assessed, to determine the microvessel density (MVD) and digital scoring of the immunohistochemical staining. The results showed that ESWT produced a significantly higher collagen content, MVD, and epidermis and dermis thickness than the control, non-treated group. Both in epidermis and dermis, FGF2 was overexpressed in the ESWT-treated groups, whereas FGFR1 was increased only in the group treated with two ESWT sessions at 21-days post-treatment. The ESWT-treated groups have also shown diminished thickness of subcutaneous fat tissue. In conclusion, ESWT induces neocollagenesis and neoangiogenesis, and upregulates the FGF2 expression, particularly in the groups treated with two sessions. Furthermore, it was demonstrated that overexpression of FGF2 on skins treated with ESWT seems to be a key role on its mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nobile V, Michelotti A, Cestone E (2016) A home-based eyebrows lifting effect using a novel device that emits electrostatic pulses containing RF energy, resulting in high frequency, low level transdermal microcurrent pulsations: double blind, randomized clinical study of efficacy and safety. J Cosmet Laser Ther 18:234–238. https://doi.org/10.3109/14764172.2016.1156704

    Article  PubMed  Google Scholar 

  2. Widgerow AD, Fabi SG, Palestine RF et al (2016) Extracellular matrix modulation: optimizing skin care and rejuvenation procedures. J Drugs Dermatol 15:s63–s71

    PubMed  CAS  Google Scholar 

  3. Fitzpatrick RE, Rostan EF (2003) Reversal of photodamage with topical growth factors: a pilot study. J Cosmet Laser Ther 5:25–34

    Article  PubMed  Google Scholar 

  4. Sclafani AP, McCormick SA (2012) Induction of dermal collagenesis, angiogenesis, and adipogenesis in human skin by injection of platelet-rich fibrin matrix. Arch Facial Plast Surg 14:132–136. https://doi.org/10.1001/archfacial.2011.784

    Article  PubMed  Google Scholar 

  5. Meyer PF, de Oliveira P, Silva FKBA et al (2017) Radiofrequency treatment induces fibroblast growth factor 2 expression and subsequently promotes neocollagenesis and neoangiogenesis in the skin tissue. Lasers Med Sci 32:1727–1736. https://doi.org/10.1007/s10103-017-2238-2

    Article  PubMed  Google Scholar 

  6. Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45. https://doi.org/10.1210/edrv.18.1.0292

    Article  PubMed  CAS  Google Scholar 

  7. Nugent MA, Iozzo RV (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32:115–120. https://doi.org/10.1016/S1357-2725(99)00123-5

    Article  PubMed  CAS  Google Scholar 

  8. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207. https://doi.org/10.1016/S0165-6147(00)01676-X

    Article  PubMed  CAS  Google Scholar 

  9. Dantas Filho AM, Aguiar JL, Rocha LR, Azevedo IM, Ramalho E, Medeiros AC (2007) Effects of the basic fibroblast growth factor and its anti-factor in the healing and collagen maturation of infected skin wound. Acta Cir Bras 22:64–71. https://doi.org/10.1590/S0102-86502007000700013

    Article  PubMed  Google Scholar 

  10. Makino T, Jinnin M, Muchemwa FC et al (2009) Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br J Dermatol 162:717–723. https://doi.org/10.1111/j.1365-2133.2009.09581.x

    Article  PubMed  CAS  Google Scholar 

  11. Schlessinger J, Plotnikov AN, Ibrahimi OA et al (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750. https://doi.org/10.1016/S1097-2765(00)00073-3

    Article  PubMed  CAS  Google Scholar 

  12. Yan D, Chen D, Cool SM et al (2011) Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther 13:R130. https://doi.org/10.1186/ar3441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mittermayr R, Antonic V, Hartinger J et al (2012) Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen 20:456–465. https://doi.org/10.1111/j.1524-475X.2012.00796.x

    Article  PubMed  Google Scholar 

  14. Kuo Y-R, Wu W-S, Hsieh Y-L et al (2007) Extracorporeal shock wave enhanced extended skin flap tissue survival via increase of topical blood perfusion and associated with suppression of tissue pro-inflammation. J Surg Res 143:385–392. https://doi.org/10.1016/j.jss.2006.12.552

    Article  PubMed  Google Scholar 

  15. Schaden W, Thiele R, Kölpl C et al (2007) Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res 143:1–12. https://doi.org/10.1016/j.jss.2007.01.009

    Article  PubMed  Google Scholar 

  16. Birgin E, Gebhardt C, Hetjens S et al (2018) Extracorporal shock wave therapy enhances receptor for advanced glycated end-product-dependent flap survival and angiogenesis. Ann Plast Surg. https://doi.org/10.1097/SAP.0000000000001279

  17. Goh C (2009) The need for evidence-based aesthetic dermatology practice. J Cutan Aesthet Surg 2:65–71. https://doi.org/10.4103/0974-2077.58518

    Article  PubMed  PubMed Central  Google Scholar 

  18. Soares CD, Borges CF, Sena-Filho M et al (2017) Prognostic significance of cyclooxygenase 2 and phosphorylated Akt1 overexpression in primary nonmetastatic and metastatic cutaneous melanomas. Melanoma Res 27:448–456. https://doi.org/10.1097/CMR.0000000000000368

    Article  PubMed  CAS  Google Scholar 

  19. Knobloch K, Kraemer R (2015) Extracorporeal shock wave therapy (ESWT) for the treatment of cellulite – a current metaanalysis. Int J Surg 24:210–217. https://doi.org/10.1016/J.IJSU.2015.07.644

    Article  PubMed  Google Scholar 

  20. Zhang X, Yan X, Wang C et al (2014) The dose–effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy. J Surg Res 186:484–492. https://doi.org/10.1016/j.jss.2013.08.013

    Article  PubMed  Google Scholar 

  21. Rosso F, Bonasia DE, Marmotti A et al (2015) Mechanical stimulation (pulsed electromagnetic fields “PEMF” and extracorporeal shock wave therapy “ESWT”) and tendon regeneration: a possible alternative. Front Aging Neurosci 7:211. https://doi.org/10.3389/fnagi.2015.00211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vetrano M, d’Alessandro F, Torrisi MR et al (2011) Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc 19:2159–2168. https://doi.org/10.1007/s00167-011-1534-9

    Article  PubMed  Google Scholar 

  23. Frairia R, Berta L (2011) Biological effects of extracorporeal shock waves on fibroblasts. a review. Muscles Ligaments Tendons J 1:138–147

    PubMed  Google Scholar 

  24. Kuo Y-R, Wang C-T, Wang F-S et al (2009) Extracorporeal shock wave treatment modulates skin fibroblast recruitment and leukocyte infiltration for enhancing extended skin-flap survival. Wound Repair Regen 17:80–87. https://doi.org/10.1111/j.1524-475X.2008.00444.x

    Article  PubMed  Google Scholar 

  25. Wang C-J (2003) An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J 26:220–232

    PubMed  Google Scholar 

  26. Meirer R, Brunner A, Deibl M et al (2007) Shock wave therapy reduces necrotic flap zones and induces VEGF expression in animal epigastric skin flap model. J Reconstr Microsurg 23:231–236. https://doi.org/10.1055/s-2007-981506

    Article  PubMed  Google Scholar 

  27. Serizawa F, Ito K, Matsubara M et al (2011) Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg 42:254–260. https://doi.org/10.1016/j.ejvs.2011.02.029

    Article  PubMed  CAS  Google Scholar 

  28. Hausdorf J, Sievers B, Schmitt-Sody M et al (2011) Stimulation of bone growth factor synthesis in human osteoblasts and fibroblasts after extracorporeal shock wave application. Arch Orthop Trauma Surg 131:303–309. https://doi.org/10.1007/s00402-010-1166-4

    Article  PubMed  Google Scholar 

  29. Adatto MA, Adatto-Neilson R, Novak P (2011) Body shaping with acoustic wave therapy AWT(®)/EPAT(®): randomized, controlled study on 14 subjects. J Cosmet Laser Ther 13:291–296. https://doi.org/10.3109/14764172.2011.630089

    Article  PubMed  Google Scholar 

  30. Knobloch K, Joest B, Vogt PM (2010) Cellulite and extracorporeal shockwave therapy (CelluShock-2009)--a randomized trial. BMC Womens Health 10:29. https://doi.org/10.1186/1472-6874-10-29

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hruza GJ, Dover JS (1996) Laser skin resurfacing. Arch Dermatol 132(4):451–455

    Article  PubMed  CAS  Google Scholar 

  32. Rostan EF (2005) Laser treatment of photodamaged skin. Facial Plast Surg 21(2):99–109

    Article  PubMed  CAS  Google Scholar 

  33. Tao L, Wu J, Qian H (2015) Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China. Lasers Med Sci 30(7):1977–1983. https://doi.org/10.1007/s10103-015-1792-8

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Brazilian National Council of Scientific and Technological Development (CNPq) research fellowship (registered under numbers 145722/2013-9, 101367/2014-7, and 117277/2014-2 to C.D.S.) and by FAPESP (São Paulo Research Foundation) for the Ph.D. fellowship to C.D.S. (#2015/25905-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Dantas Soares.

Ethics declarations

This experimental protocol followed the guidelines of the Animal Experimentation Code of Ethics and Brazilian College of Animal Experimentation and was duly approved by the Ethics Committee of Potiguar University, Laureate International Universities (protocol number 002/2017).

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Not applicable. This article does not contain any studies with human participants.

Electronic supplementary material

Supplementary Figure 1

A: The device utilized for the experiments. B: Image demonstrating the use of the device in one subject. (PNG 4691 kb)

High resolution image (TIF 6208 kb)

(AVI 11631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Morais, T.M., Meyer, P.F., de Vasconcellos, L.S. et al. Effects of the extracorporeal shock wave therapy on the skin: an experimental study. Lasers Med Sci 34, 389–396 (2019). https://doi.org/10.1007/s10103-018-2612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2612-8

Keywords

Navigation