Skip to main content
Log in

Determining the optimal parameters of 420-nm intense pulsed light on Trichophyton rubrum growth in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effect of and the optimal parameters for intense pulsed light (IPL) with a 420-nm filter on an isolate of the fungus Trichophyton rubrum (T. rubrum) were examined in vitro. Colonies of T. rubrum were irradiated by using 420-nm IPL with various pulse numbers and energies. Colony areas were photographed and compared with those of untreated colonies to assess growth inhibition. Statistically significant inhibition of T. rubrum growth was detected in colonies treated with 12 pulses of greater than or equal to 12 J/cm2. The optimal parameters of 420-nm IPL were 12 pulses of 12 J/cm2. However, more in vitro and in vivo studies are necessary to investigate and explore this mechanism to determine whether IPL would have a potential use in the treatment of fungal infections of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burmester A, Shelest E, Glockner G et al (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 12(1):R7

    Article  CAS  Google Scholar 

  2. Peres NT, Maranhao FC, Rossi A et al (2010) Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 85(5):657–667

    Article  Google Scholar 

  3. Aly R (1994) Ecology and epidemiology of dermatophyte infections. J Am Acad Dermatol 31(3 Pt 2):S21–S25

    Article  CAS  Google Scholar 

  4. Nenoff P, Kruger C, Ginter-Hanselmayer G et al (2014) Mycology—an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges 12(3):188–209 210, 188–211, 212

    PubMed  Google Scholar 

  5. Meis JF, Verweij PE (2001) Current management of fungal infections. Drugs 61(Suppl 1):13–25

    Article  CAS  Google Scholar 

  6. El-Gohary M, van Zuuren EJ, Fedorowicz Z et al (2014) Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst Rev 4(8):D9992

    Google Scholar 

  7. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11(6):272–279

    Article  CAS  Google Scholar 

  8. Piscitelli SC, Rodvold K, Pai MP (2011) Drug interactions in infectious diseases[M]. Humana Press, New York

    Book  Google Scholar 

  9. Smijs TG, van der Haas RN, Lugtenburg J et al (2004) Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80(2):197–202

    Article  CAS  Google Scholar 

  10. Mang TS, Mikulski L, Hall RE (2010) Photodynamic inactivation of normal and antifungal resistant Candida species. Photodiagn Photodyn Ther 7(2):98–105

    Article  CAS  Google Scholar 

  11. Vural E, Winfield HL, Shingleton AW et al (2008) The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci 23(4):349–353

    Article  Google Scholar 

  12. Calzavara-Pinton PG, Venturini M, Capezzera R et al (2004) Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatol Photoimmunol Photomed 20(3):144–147

    Article  CAS  Google Scholar 

  13. Sotiriou E, Koussidou-Eremonti T, Chaidemenos G et al (2010) Photodynamic therapy for distal and lateral subungual toenail onychomycosis caused by Trichophyton rubrum: preliminary results of a single-centre open trial. Acta Derm Venereol 90(2):216–217

    Article  Google Scholar 

  14. Babilas P, Schreml S, Szeimies RM et al (2010) Intense pulsed light (IPL): a review. Lasers Surg Med 42(2):93–104

    Article  Google Scholar 

  15. Yeung CK, Shek SY, Bjerring P et al (2007) A comparative study of intense pulsed light alone and its combination with photodynamic therapy for the treatment of facial acne in Asian skin[J]. Lasers Surg Med 39(1):1–6

    Article  Google Scholar 

  16. Taub AF (2007) A comparison of intense pulsed light, combination radiofrequency and intense pulsed light, and blue light in photodynamic therapy for acne vulgaris. J Drugs Dermatol 6(10):1010–1016

    PubMed  Google Scholar 

  17. Chang SE, Ahn SJ, Rhee DY et al (2007) Treatment of facial acne papules and pustules in Korean patients using an intense pulsed light device equipped with a 530- to 750-nm filter. Dermatol Surg 33(6):676–679

    CAS  PubMed  Google Scholar 

  18. Fan X, Xing YZ, Liu LH et al (2013) Effects of 420-nm intense pulsed light in an acne animal model. J Eur Acad Dermatol Venereol 27(9):1168–1171

    Article  CAS  Google Scholar 

  19. Byun JY, Lee GY, Choi HY et al (2011) The expressions of TGF-beta(1) and IL-10 in cultured fibroblasts after ALA-IPL photodynamic treatment. Ann Dermatol 23(1):19–22

    Article  CAS  Google Scholar 

  20. Mei X, Shi W, Piao Y (2013) Effectiveness of photodynamic therapy with topical 5-aminolevulinic acid and intense pulsed light in Chinese acne vulgaris patients. Photodermatol Photoimmunol Photomed 29(2):90–96

    Article  CAS  Google Scholar 

  21. Shaaban D, Abdel-Samad Z, El-Khalawany M (2012) Photodynamic therapy with intralesional 5-aminolevulinic acid and intense pulsed light versus intense pulsed light alone in the treatment of acne vulgaris: a comparative study. Dermatol Ther 25(1):86–91

    Article  Google Scholar 

  22. Liang YI, Lu LM, Chen Y et al (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12(1):23–27

    Article  CAS  Google Scholar 

  23. Gilaberte Y, Aspiroz C, Alejandre MC et al (2014) Cutaneous sporotrichosis treated with photodynamic therapy: an in vitro and in vivo study. Photomed Laser Surg 32(1):54–57

    Article  Google Scholar 

  24. Ledon JA, Savas J, Franca K et al (2014) Laser and light therapy for onychomycosis: a systematic review. Lasers Med Sci 29(2):823–829

    Article  Google Scholar 

  25. Galvan GH (2014) Onychomycosis: 1064-nm Nd:YAG q-switch laser treatment. J Cosmet Dermatol 13(3):232–235

    Article  Google Scholar 

  26. Omi T, Bjerring P, Sato S et al (2004) 420 nm intense continuous light therapy for acne. J Cosmet Laser Ther 6(3):156–162

    Article  Google Scholar 

  27. Ghavam SA, Aref S, Mohajerani E et al (2015) Laser irradiation on growth of trichophyton rubrum: an in vitro study. J Lasers Med Sci 6(1):10–16

    PubMed  PubMed Central  Google Scholar 

  28. Devasagayam TP, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  PubMed  Google Scholar 

  29. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Traditional Chinese Medicine Bureau of Guangdong Province (No. 20171301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Tang, H., Huang, M. et al. Determining the optimal parameters of 420-nm intense pulsed light on Trichophyton rubrum growth in vitro. Lasers Med Sci 33, 1667–1671 (2018). https://doi.org/10.1007/s10103-018-2512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2512-y

Keywords

Navigation