Skip to main content
Log in

Clinical application of multicolour scanning laser imaging in diabetic retinopathy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To compare the visualization of the lesions of diabetic retinopathy (DR) using multicolour scanning laser imaging (MSLI) and conventional colour fundus photography (CFP). The paired images of diabetic patients who underwent same-day MSLI and CFP examinations were reviewed. Combined multicolour (MC) images were acquired simultaneously using three laser wavelengths: blue reflectance (BR, λ = 488 nm), green reflectance (GR, λ = 518 nm) and infrared reflectance (IR, λ = 820 nm). The number of positive DR lesions was calculated using fundus fluorescein angiography as the reference standard. The visibility of the microaneurysms (Mas) was graded using a scale, and the number of Mas for each method was counted by two masked readers. Eighty eyes of 42 diabetic patients were included. The average grading score for Mas visualization was significantly higher with MC (1.50 ± 0.71) and GR (1.55 ± 0.69) than with CFP (0.95 ± 0.81). The average number of Mas was also significantly higher with MC (11.41 ± 14.02) and GR (11.93 ± 13.43) than with CFP (6.43 ± 9.39). The number of positive Mas, diabetic macular edema (DME) and epiretinal membranes (ERM) were significantly higher with MC than CFP (P < 0.05), while the numbers of cotton wool spots, haemorrhages, hard exudates, venous beading and abnormal new vessels were not significantly different (P > 0.05). Mas and ERM were most effectively detected on GR images, and an elevated greenish shift was clearly visualized in patients with DME on the MC images. MSLI can effectively visualize Mas and other pathological lesions of DR compared with CFP. MSLI with superior resolution may be a useful complement for DME and ERM detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ART:

automatic real-time

BR:

blue reflectance

CFP:

colour fundus photography

cSLO:

confocal scanning laser ophthalmoscopy

CWS:

cotton wool spots

DM:

diabetes mellitus

DME:

diabetic macular edema

DR:

diabetic retinopathy

ERM:

epiretinal membrane

FPE:

fibrous proliferations

GR:

green reflectance

HEs:

hard exudates

IR:

infrared reflectance

IRH:

intraretinal haemorrhages

IRMA:

intraretinal microvascular abnormalities

Mas:

microaneurysms

MC:

multicolour

MSLI:

multicolour scanning laser imaging

NV:

neovascularization

PRH:

preretinal haemorrhages

SD-OCT:

spectral domain optical coherence tomography

VB:

venous beading

VL:

vascular loops

References

  1. Zhou B, Lu Y, Hajifathalian K et al (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4•4 million participants. Lancet 387(10027):1513. https://doi.org/10.1016/S0140-6736(16)00618-8

  2. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102(4):527–532

    Article  PubMed  CAS  Google Scholar 

  3. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239

    Article  PubMed  CAS  Google Scholar 

  4. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification (1991) ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98(5 Suppl):786–806

  5. Williams GA, Scott IU, Haller JA, Maguire AM, Marcus D, McDonald HR (2004) Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of ophthalmology. Ophthalmology 111(5):1055–1062

    Article  PubMed  Google Scholar 

  6. Norton EW, Gutman F (1965) Diabetic retinopathy studied by fluorescein angiography. Trans Am Ophthalmol Soc 63:108–128

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Classification of diabetic retinopathy from fluorescein angiograms (1991) ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98(5 Suppl):807–822

  8. Virgili G, Menchini F, Casazza G et al (2015) Optical coherence tomography (OCT) for detection of macular edema in patients with diabetic retinopathy. Cochrane Database Syst Rev 1:CD008081

    PubMed  PubMed Central  Google Scholar 

  9. Fujimoto J, Swanson E (2016) The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci 57(9):OCT1–OCT13

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keane PA, Sadda SR (2014) Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology 121(12):2489–2500

    Article  PubMed  Google Scholar 

  11. Webb R H, Hughes G W, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26(8):1492–9

  12. Schmitz-Valckenberg S, Steinberg JS, Fleckenstein M, Visvalingam S, Brinkmann CK, Holz FG (2010) Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology 117(6):1169–1176

    Article  PubMed  Google Scholar 

  13. Murphy R (2012) Multicolor fundus imaging prepares for debut. Retin Physician 9:77

  14. Tan AC, Fleckenstein M, Schmitz-Valckenberg S, Holz FG (2016) Clinical application of multicolor imaging technology. Ophthalmologica 236(1):8–18

    Article  PubMed  Google Scholar 

  15. Schmitz-Valckenberg S, Steinberg JS, Fleckenstein M, Visvalingam S, Brinkmann CK, Holz FG (2010) Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology 117(6):1169–1176

    Article  PubMed  Google Scholar 

  16. Ben MN, Georges A, Capuano V, Merle B, Souied EH, Querques G (2015) MultiColor imaging in the evaluation of geographic atrophy due to age-related macular degeneration. Br J Ophthalmol 99(6):842–847

    Article  Google Scholar 

  17. Reznicek L, Dabov S, Kayat B et al (2014) Scanning laser 'en face' retinal imaging of epiretinal membranes. Saudi J Ophthalmol 28(2):134–138

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malem A, De Salvo G, West S (2016) Use of MultiColor imaging in the assessment of suspected papilledema in 20 consecutive children. J AAPOS 20(6):532–536

    Article  PubMed  Google Scholar 

  19. Yu S, Bellone D, Lee SE, Yannuzzi LA (2015) Multimodal imaging in foveal red spot syndrome. Retin Cases Brief Rep 9(2):97–101

    Article  PubMed  Google Scholar 

  20. Sarwar S, Hanout M, Sadiq MA et al (2016) Retinal vessel caliber measurement using MultiColor and infrared confocal scanning laser ophthalmoscopy fundus images. Int Ophthalmol Clin 56(4):67–83

    Article  PubMed  Google Scholar 

  21. La Parra DR, Perez-Peralta L, Toldi J, Levine J, Fikhman M, Graue-Hernandez EO (2017) MULTICOLOR SCANNING LASER IMAGING IN LIPEMIA RETINALIS. Retin Cases Brief Rep. 11(Suppl 1):S132–S135

    Article  Google Scholar 

  22. Körner A (2012) Standards of medical care in diabetes—2012. Diabetes Care 35(Suppl 1):S11–63. https://doi.org/10.2337/dc12-s011

  23. Wilkinson CP, Ferris FL, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  PubMed  CAS  Google Scholar 

  24. Novais EA, Baumal CR, Sarraf D, Freund KB, Duker JS (2016) Multimodal imaging in retinal disease: a consensus definition. Ophthalmic Surg Lasers Imaging Retina 47(3):201–205

    Article  PubMed  Google Scholar 

  25. Neubauer AS, Kernt M, Haritoglou C, Priglinger SG, Kampik A, Ulbig MW (2008) Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap). Graefes Arch Clin Exp Ophthalmol 246(2):229–235

    Article  PubMed  Google Scholar 

  26. Yannuzzi LA, Ober MD, Slakter JS et al (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137(3):511–524

    Article  PubMed  Google Scholar 

  27. Ward NP, Tomlinson S, Taylor CJ (1989) Image analysis of fundus photographs. The detection and measurement of exudates associated with diabetic retinopathy. Ophthalmology 96(1):80–86

    Article  PubMed  CAS  Google Scholar 

  28. Kilic MI, Bartsch DU, Barteselli G, Gaber R, Nezgoda J, Freeman WR (2018) VISUALIZATION OF MACULAR PUCKER BY MULTICOLOR SCANNING LASER IMAGING. Retina 38:352–358

    Article  Google Scholar 

  29. Hammes HP (2005) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51(10):3107–3112

    Article  Google Scholar 

  30. Miri MS, Abràmoff MD, Kwon YH, Garvin MK (2016) Multimodal registration of SD-OCT volumes and fundus photographs using histograms of oriented gradients. Biomed Opt Express 7(12):5252–5267

    Article  PubMed  PubMed Central  Google Scholar 

  31. Niu S, Yu C, Chen Q et al (2017) Multimodality analysis of hyper-reflective foci and hard exudates in patients with diabetic retinopathy. Sci Rep 7(1):1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tomasso L, Benatti L, Carnevali A et al (2016) Photobleaching by Spectralis fixation target. JAMA Ophthalmol 134(9):1060–1062

    Article  PubMed  Google Scholar 

  33. Pang CE, Freund KB (2014) Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology. Am J Ophthalmol 158(1):171–178.e2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant NO.16DZ0501100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wu.

Ethics declarations

This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant NO.16DZ0501100). The study protocol was approved by the Institutional Review Board of Shanghai Sixth People’s Hospital and follows the tenets of the Declaration of Helsinki for experimentation on humans. Written informed consent was obtained from all patients. The study was registered in the Chinese clinical trial registry (http://www.chictr.org.cn/, Registration number: ChiCTR-OOC-16010160).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, X., Du, X. et al. Clinical application of multicolour scanning laser imaging in diabetic retinopathy. Lasers Med Sci 33, 1371–1379 (2018). https://doi.org/10.1007/s10103-018-2498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2498-5

Keywords

Navigation