Skip to main content

Advertisement

Log in

Effect of the carbon dioxide 10,600-nm laser and topical fluoride gel application on enamel microstructure and microhardness after acid challenge: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this in-vitro study was to evaluate positive effects of the carbon dioxide laser (CO2, 10,600 nm) with acidulated phosphate fluoride (APF) gel on enamel acid resistance. Twenty extracted human third molars (40 surfaces) were randomly assigned into four groups: group C, untreated control; group L, CO2 laser alone group; group F, APF 1.23% fluoride gel; and group FL, APF 1.23% gel and laser. Samples from group L were irradiated with a CO2 laser for 30s. The parameter settings used were average power, 0.73 W; time on, 100 μs; time off, 40 ms; tip-to-tissue distance, 20 mm; tip diameter 700 μm; and energy density with movements, 5 J/cm2. Samples from group F were treated with the APF gel for 4 min, and the gel was washed off with distilled water. The enamel samples from group FL were treated with APF gel for 4 min and then irradiated with the CO2 laser for 30s without removing the gel. Each enamel sample was placed in 50 ml soft drink (pH = 2.75) for 10 min then rinsed with deionized water and stored in artificial saliva at 37 °C for 1 h. Samples were assessed for Vickers hardness number (VHN) before and after treatments and subjected to SEM analysis. Data were analyzed using a one-way analysis of variance (ANOVA) and Tukey’s test (α < 0.05). After the acid challenge, the untreated C group was demineralized to a great extent and the enamel surface was with the lowest mean score of microhardness. The observed VHN in the control (C group) had a mean value of 176.13, the scores in the CO2 laser group (L group) were with mean value of 238.40, the F group with a mean value of 218.45, and the fluoride-treated and laser-irradiated FL group—with a mean of 268.28 VHN. Paired t test performed to compare groups C, L, F, and FL has shown that group FL has greater resistance to decrease in microhardness of dental enamel (P ≤ 0.05) on exposure to acidic protocol. After the acid challenge, the fluoride-treated and laser-irradiated samples (group FL) showed the least diminution in enamel surface microhardness. The sub-ablative carbon dioxide laser irradiation in combination with fluoride treatment is more effective in protecting enamel surface and resisting demineralization than CO2 laser irradiation or fluoride alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Attin T, Koidl U, Buchalla W et al (1997) Correlation of microhardness and wear of differently eroded enamel. Arch Oral Biol 42:243–250

    Article  PubMed  CAS  Google Scholar 

  2. Bartlett DW, Blunt L, Smith BG (1997) Measurement of tooth wear in patients with palatal erosion. Br Dent J 182:179–184

    Article  PubMed  CAS  Google Scholar 

  3. Lussi A, Schaffner M (2000) Progression of and risk factors for dental erosion and wedge-shaped defects over a 6-year period. Caries Res 34:182–187

    Article  PubMed  CAS  Google Scholar 

  4. Ganss C, Klimek J, Giese K (2001) Dental erosion in children and adolescents-a cross-sectional and longitudinal investigation using study models. Community Dent Oral Epidemiol 29:264–271

    Article  PubMed  CAS  Google Scholar 

  5. Lussi A, Jaeggi T, Schaffner M (2002) Diet and dental erosion. Nutrition 18:780–781

    Article  PubMed  CAS  Google Scholar 

  6. Millward A, Shaw L, Smith AJ et al (1994) The distribution and severity of tooth wear and the relationship between erosion and dietary constituents in a group of children. Int J Paediatr Dent 4:152–157

    Google Scholar 

  7. Ganss C, Schlueter N, Hardt M et al (2008) Effect of fluoride compounds on enamel erosion in vitro: a comparison of amine, sodium and stannous fluoride. Caries Res 42(1):2–7

    Article  PubMed  CAS  Google Scholar 

  8. Wiegand A, Magalhães AC, Navarro RS et al (2010) Effect of titanium tetrafluoride and amine fluoride treatment combined with carbon dioxide lase irradiation on enamel and dentin erosion. Photomed Laser Surg 28(2):219–226

    Article  PubMed  CAS  Google Scholar 

  9. Marthaler TM (2004) Changes in dental caries 1953–2003. Caries Res 38:173–181

    Article  PubMed  CAS  Google Scholar 

  10. Lima YBO, Cury JA (2003) Seasonal variation of fluoride intake by children in a subtropical region. Caries Res 37:335–338

    Article  PubMed  CAS  Google Scholar 

  11. Yu H, Attin T, Wiegand A et al (2010) Effects of various fluoride solutions on enamel erosion in vitro. Caries Res 44(4):390–401

    Article  PubMed  CAS  Google Scholar 

  12. Hove LH, Holme B, Young A et al (2007) The erosion-inhibiting effect of TiF4, SnF2, and NaF solutions on pellicle-covered enamel in vitro. Acta Odontol Scand 65(5):259–264

    Article  PubMed  CAS  Google Scholar 

  13. Hove LH, Holme B, Young A et al (2008) The protective effect of TiF4, SnF2 and NaF against erosion-like lesions in situ. Caries Res 42(1):68–72

    Article  PubMed  CAS  Google Scholar 

  14. van Rijkom H, Ruben J, Vieira A et al (2003) Erosion-inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro. Eur J Oral Sci 111(3):253–257

    Article  PubMed  Google Scholar 

  15. Büyükyilmaz T, Ogaard B, Rolla G (1997) The resistance of titanium tetrafluoride-treated enamel to strong hydrochloric acid. Eur J Oral Sci 105:473–477

    Article  PubMed  Google Scholar 

  16. Schlueter N, Ganss C, Mueller U et al (2007) Effect of titanium tetrafluoride and sodium fluoride on erosion progression in enamel and dentine in vitro. Caries Res 41(2):14–45

    Article  CAS  Google Scholar 

  17. Vlacic J, Meyers IA, Walsh LJ (2007) Laser-activated fluoride treatment of enamel as prevention against erosion. Aust Dent J 52(3):175–180

    Article  PubMed  CAS  Google Scholar 

  18. Zero DT, Lussi A (2005) Erosion—chemical and biological factors of importance to the dental practitioner. Int Dent J 55(4 Suppl 1):285–290

    Article  PubMed  Google Scholar 

  19. Harris NO, Garcia-Goday F, Nathe CN (2008) Primary preventive dentistry 7th ed. New Jersey: Pearson Higher Ed 6(9):246–251

    Google Scholar 

  20. Featherstone JDB, Nelson DGA (1987) Laser effects on dental hard tissue. Adv Dent Res 1:21–26

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi K, Kimura Y, Matsumoto K (1998) Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 μm on human dental hard tissue. J Clin Laser Med Surg 16:167–173

    Article  PubMed  CAS  Google Scholar 

  22. Hossain MM, Hossain M, Kimura Y et al (2002) Acquired acid resistance of enamel and dentin by CO2 laser irradiation with sodium fluoride solution. J Clin Laser Med Surg 20(2):77–82

    Article  PubMed  Google Scholar 

  23. Yamashita JM, Torres NM, Moura-Grec PG et al (2013) Role of arginine and fluoride in the prevention of eroded enamel: an in vitro model. Aust Dent J 58:478–482

    Article  PubMed  CAS  Google Scholar 

  24. Klocke A, Mihailova B, Zhang S et al (2007) CO2 laser-induced zonation in dental enamel: a Raman and IR microspectroscopic study. J Biomed Mater Res B Appl Biomater 81(2):499–507

    Article  PubMed  CAS  Google Scholar 

  25. Mirhashemi AH, Hakimi S, Ahmad Akhoundi MS et al (2016) Prevention of enamel adjacent to bracket demineralization following carbon dioxide laser radiation and titanium tetra fluoride solution treatment: an in vitro study. J Lasers Med Sci 7(3):192–196

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lepri TP, Colucci V, Turssi CP et al (2015) In situ investigation of the effect of TiF4 and CO2 laser irradiation on the permeability of eroded enamel. Arch Oral Biol 60(6):941–947

    Article  PubMed  CAS  Google Scholar 

  27. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Article  PubMed  CAS  Google Scholar 

  28. Kuroda S, Fowler BO (1984) Compositional, structural, and phase changes in in vitro laser-irradiated human tooth enamel. Calcif Tissue Int 36(4):361–369

    Article  PubMed  CAS  Google Scholar 

  29. Tagomori S, Morioka T (1989) Combined effects of laser and fluoride on acid resistance of human dental enamel. Caries Res 23(4):225–231

    Article  PubMed  CAS  Google Scholar 

  30. Correa-Afonso AM, Pécora JD, Palma-Dibb RG (2013) Influence of laser irradiation on pits and fissures: an in situ study. Photomed Laser Surg 31(2):82–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Paulos RS, Seino PY, Fukushima KA, Marques MM, de Almeida FCS, Ramalho KM, de Freitas PM, Brugnera A Jr, Moreira MS (2017) Effect of Nd:YAG and CO2 laser irradiation on prevention of enamel demineralization in orthodontics: in vitro study. Photomed Laser Surg 35(5):282–286

    Article  PubMed  CAS  Google Scholar 

  32. Jeng YR, Lin TT, Huang JS et al (2013) Topical laser application enhances enamel fluoride uptake and tribological properties. J Dent Res 92(7):655–660

    Article  PubMed  CAS  Google Scholar 

  33. Vieira KA, Steiner-Oliveira C, Soares LE et al (2015) In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications. Lasers Med Sci 30(2):901–907

    Article  PubMed  CAS  Google Scholar 

  34. Schmidlin PR, Dorig I, Lussi A et al (2007) CO2 laser-irradiation through topically applied fluoride increases acid resistance of demineralised human enamel in vitro. Oral Health Prev Dent 5(3):201–208

    PubMed  Google Scholar 

  35. Kantorowitz Z, Featherstone JD, Fried D (1998) Caries prevention by CO2 laser treatment: dependency on the number of pulses used. J Am Dent Assoc 129(5):585–591

    Article  PubMed  CAS  Google Scholar 

  36. Fried D, Ragadio J, Champion A (2001) Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm. Lasers Surg Med 29(3):221–229

    Article  PubMed  CAS  Google Scholar 

  37. Fried D, Murray M, Featherstone JDB et al (1999) Dental hard tissue modification and removal using sealed TEA lasers operating at λ = 9.6 and 10.6 μm. Lasers in Dentistry V. Proceeding of the SPIE Meeting, San Jose. Washington, Bellingham

    Google Scholar 

  38. Klein A, Rodrigues L, Eduardo C et al (2005) Caries inhibition around composite restorations by pulsed carbon dioxide laser application. Eur J Oral Sci 113(3):239–244

    Article  PubMed  Google Scholar 

  39. Steiner-Oliveira C, Rodrigues LK, Soares LE et al (2006) Chemical, morphological and thermal effects of 10.6-microm CO2 laser on the inhibition of enamel demineralization. Dent Mater J 25(3):455–462

    Article  PubMed  CAS  Google Scholar 

  40. Zuerlein MJ, Fried D, Featherstone JD (1999) Modeling the modification depth of carbon dioxide laser-treated dental enamel. Lasers Surg Med 25(4):335–347

    Article  PubMed  CAS  Google Scholar 

  41. Wu CC, Roan RT, Chen JH (2002) Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-lμm CO2 laser. Lasers Surg Med 31:333–338

    Article  PubMed  Google Scholar 

  42. Passos VF, Melo MA, Silva FF et al (2014) Effects of diode laser therapy and stannous fluoride on dentin resistance under different erosive acid attacks. Photomed Laser Surg 32:146–151

    Article  PubMed  CAS  Google Scholar 

  43. Steiner-Oliveira C, Nobre-dos-Santos M, Zero DT et al (2010) Effect of a pulsed CO2 laser and fluoride on the prevention of enamel and dentine erosion. Arch Oral Biol 55(2):127–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was undertaken within the research global budget for the Medical University of Plovdiv, Bulgaria.

Consent was not required owing to the anonymous nature of the sourcing of teeth extracted for oral surgery purposes at Medical University, Plovdiv, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belcheva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belcheva, A., El Feghali, R., Nihtianova, T. et al. Effect of the carbon dioxide 10,600-nm laser and topical fluoride gel application on enamel microstructure and microhardness after acid challenge: an in vitro study. Lasers Med Sci 33, 1009–1017 (2018). https://doi.org/10.1007/s10103-018-2446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2446-4

Keywords

Navigation