Lasers in Medical Science

, Volume 33, Issue 3, pp 619–625 | Cite as

Nerve detection during surgery: optical spectroscopy for peripheral nerve localization

  • Gerrit C. Langhout
  • Koert F. D. Kuhlmann
  • Michel W. J. M. Wouters
  • Jos A. van der Hage
  • Frits van Coevorden
  • Manfred Müller
  • Torre M. Bydlon
  • Henricus J. C. M. Sterenborg
  • Benno H. W. Hendriks
  • Theo J. M. Ruers
Original Article
  • 66 Downloads

Abstract

Precise nerve localization is of major importance in both surgery and regional anesthesia. Optically based techniques can identify tissue through differences in optical properties, like absorption and scattering. The aim of this study was to evaluate the potential of optical spectroscopy (diffuse reflectance spectroscopy) for clinical nerve identification in vivo. Eighteen patients (8 male, 10 female, age 53 ± 13 years) undergoing inguinal lymph node resection or resection or a soft tissue tumor in the groin were included to measure the femoral or sciatic nerve and the surrounding tissues. In vivo optical measurements were performed using Diffuse Reflectance Spectroscopy (400–1600 nm) on nerve, near nerve adipose tissue, muscle, and subcutaneous fat using a needle-shaped probe. Model-based analyses were used to derive verified quantitative parameters as concentrations of optical absorbers and several parameters describing scattering. A total of 628 optical spectra were recorded. Measured spectra reveal noticeable tissue specific characteristics. Optical absorption of water, fat, and oxy- and deoxyhemoglobin was manifested in the measured spectra. The parameters water and fat content showed significant differences (P < 0.005) between nerve and all surrounding tissues. Classification using k-Nearest Neighbor based on the derived parameters revealed a sensitivity of 85% and a specificity of 79%, for identifying nerve from surrounding tissues. Diffuse Reflectance Spectroscopy identifies peripheral nerve bundles. The differences found between tissue groups are assignable to the tissue composition and structure.

Keywords

Nerves Nerve sparing Surgery Anesthesia Optical spectroscopy Spectroscopy 

Notes

Acknowledgements

We would like to thank Arnold van Keersop (Philips Research) for his assistance in analyzing the data and Vishnu Pully and Christian Reich for technical support during the data collection. We acknowledge Marjolein van der Voort and Gerald Lucassen (Philips Healthcare) for their guidance in the overall study design, data analysis, and review of the manuscript.

Compliance with ethical standards

Conflict of interest statement

The authors who are affiliated with Philips Research (M.M., T.B., B.H.) are employees of Philips. The prototype system described in this article is a research prototype. None of the other authors have any conflicts of interest.

Ethical approval

This study was performed at The Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital under approval of the protocol and ethics review board (NL40893.031.12).

Informed consent

Written informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Lange MM, van de Velde CJ (2010) Long-term anorectal and urogenital dysfunction after rectal cancer treatment. Sem Col Rec Surg, pp 87–94Google Scholar
  2. 2.
    Celentano V, Fabbrocile G, Luglio G, Antonelli G, Tarquini R, Bucci L (2010) Prospective study of sexual dysfunction in men with rectal cancer: feasibility and results of nerve sparing surgery. Int J Color Dis 25:1441–1445CrossRefGoogle Scholar
  3. 3.
    Urmey WF, Stanton J (2002) Inability to consistently elicit a motor response following sensory paresthesia during interscalene block administration. Anesthesiology 96:552–554CrossRefPubMedGoogle Scholar
  4. 4.
    Perlas A, Niazi A, McCartney C, Chan V, Xu D, Abbas S (2006) The sensitivity of motor response to nerve stimulation and paresthesia for nerve localization as evaluated by ultrasound. Reg Anesth Pain Med 31:445–450CrossRefPubMedGoogle Scholar
  5. 5.
    Walker KJ, McGrattan K, Aas-Eng K, Smith AF (2009) Ultrasound guidance for peripheral nerve blockade. Cochrane Db Syst Rev 4:CD006459Google Scholar
  6. 6.
    Chan VW, Perlas A, McCartney CJ, Brull R, Xu D, Abbas S (2007) Ultrasound guidance improves success rate of axillary brachial plexus block. Can J Anaesth 54:176–182CrossRefPubMedGoogle Scholar
  7. 7.
    Brynolf M, Sommer M, Desjardins AE, van der Voort M, Roggeveen S, Bierhoff W, Hendriks BH, Rathmell JP, Kessels AG, Söderman M (2011) Optical detection of the brachial plexus for peripheral nerve blocks: an in vivo swine study. Reg Anesth Pain Med 36:350–357CrossRefPubMedGoogle Scholar
  8. 8.
    Desjardins AE, Van der Voort M, Roggeveen S, Lucassen G, Bierhoff W, Hendriks BH, Brynolf M, Holmström B (2011) Needle stylet with integrated optical fibers for spectroscopic contrast during peripheral nerve blocks. J Biomed Opt 16:077004CrossRefPubMedGoogle Scholar
  9. 9.
    Stelzle F, Knipfer C, Bergauer B, Rohde M, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M (2014) Optical nerve identification in head and neck surgery after Er: YAG laser ablation. Lasers Med Sci 29:1641–1648CrossRefPubMedGoogle Scholar
  10. 10.
    Balthasar A, Desjardins AE, van der Voort M, Lucassen GW, Roggeveen S, Wang K, Bierhoff W, Kessels AG, van Kleef M, Sommer M (2012) Optical detection of peripheral nerves: an in vivo human study. Reg Anesth Pain Med 37:277–282CrossRefPubMedGoogle Scholar
  11. 11.
    Schols RM, ter Laan M, Stassen LP, Bouvy ND, Amelink A, Wieringa FP, Alic L (2014) Differentiation between nerve and adipose tissue using wide-band (350–1,830 nm) in vivo diffuse reflectance spectroscopy. Laser Surg Med 46:538–545CrossRefGoogle Scholar
  12. 12.
    Hendriks BH, Balthasar AJ, Lucassen GW, van der Voort M, Mueller M, Pully VV, Bydlon TM, Reich C, van Keersop AT, Kortsmit J, Langhout GC, van Geffen GJ (2015) Nerve detection with optical spectroscopy for regional anesthesia procedures. J Trans Med 13:380CrossRefGoogle Scholar
  13. 13.
    Nachabé R, Evers DJ, Hendriks BH, Lucassen GW, van der Voort M, Rutgers EJ, Peeters M-JV, Van der Hage JA, Oldenburg HS, Wesseling J (2011) Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt 16:087010–087012CrossRefPubMedGoogle Scholar
  14. 14.
    Nachabé R, Sterenborg HJ, Hendriks BH, Desjardins AE, van der Voort M, van der Mark MB (2010) Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900to1600nm. J Biomed Opt 15:037015CrossRefPubMedGoogle Scholar
  15. 15.
    Farrell TJ, Patterson MS, Wilson B (1992) A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys 19:879–888CrossRefPubMedGoogle Scholar
  16. 16.
    Nachabé R, Hendriks BH, van der Voort M, Desjardins AE, Sterenborg HJ (2010) Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomed Opt Express 1:1432–1442CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Getoor L, Taskar B (2007) Introduction to statistical relational learning. MIT press, LondonGoogle Scholar
  18. 18.
    Maravilla KR, Bowen BC (1998) Imaging of the peripheral nervous system: evaluation of peripheral neuropathy and plexopathy. Am J Neuroradiol 19:1011–1023PubMedGoogle Scholar
  19. 19.
    Brady S, Siegel G, Albers RW, Price D (2007) Basic neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  20. 20.
    Arifler D, MacAulay C, Follen M, Richards-Kortum R (2006) Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements. J Biomed Opt 11:064027CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Gerrit C. Langhout
    • 1
  • Koert F. D. Kuhlmann
    • 1
  • Michel W. J. M. Wouters
    • 1
  • Jos A. van der Hage
    • 1
  • Frits van Coevorden
    • 1
  • Manfred Müller
    • 2
  • Torre M. Bydlon
    • 2
  • Henricus J. C. M. Sterenborg
    • 3
  • Benno H. W. Hendriks
    • 2
    • 4
  • Theo J. M. Ruers
    • 1
    • 5
  1. 1.Department of Surgery, The Netherlands Cancer InstituteAntoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
  2. 2.Philips Research, In-Body Systems DepartmentEindhovenThe Netherlands
  3. 3.Department of Biomedical Engineering and PhysicsAmsterdam Medical CenterAmsterdamThe Netherlands
  4. 4.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  5. 5.Nanobiophysics Group, MIRA InstituteUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations