Lasers in Medical Science

, Volume 33, Issue 3, pp 549–557 | Cite as

Chondroitin sulfate and glucosamine sulfate associated to photobiomodulation prevents degenerative morphological changes in an experimental model of osteoarthritis in rats

  • Marcella Sanches
  • Lívia Assis
  • Cyntia Criniti
  • Danilo Fernandes
  • Carla Tim
  • Ana Claudia Muniz Renno
Original Article


The aim of this study was to compare the effects of combined treatment with chondroitin sulfate and glucosamine sulfate (CS/Gl) and photobiomodulation (PBM) on the degenerative process related to osteoarthritis (OA) in the articular cartilage in rats. Forty male Wistar rats were randomly divided into four groups: OA control group (CG); OA animals submitted to PBM treatment (PBM); OA animals submitted to CS/Gl treatment (CS/Gl); OA submitted to CS/GS associated with PBM treatments (GS/Gl + PBM). The CS/Gl started 48 h after the surgery, and they were performed for 29 consecutive days. Moreover, PBM was performed after the CS/Gl administration on the left joint. Morphological characteristics and immunoexpression of interleukin 10 (IL-10) and 1 beta (IL-1β) and collagen type II (Col II) of the articular cartilage were evaluated. The results showed that all treated groups (CS/Gl and PBM) presented attenuation signs of degenerative process (measured by histopathological analysis) and lower density chondrocytes [PBM (p = 0.0017); CS/Gl (p = 0.0153) and CS/Gl + PBM (p = 0.002)]. Additionally, CS/Gl [associated (p = 0.0089) or not with PBM (p = 0.0059)] showed significative lower values for OARSI grade evaluation. Furthermore, CS/GS + PBM decreased IL-1β protein expression (p = 0.0359) and increased IL-10 (p = 0.028) and Col II imunoexpression (p = 0.0204) compared to CG. This study showed that CS/Gl associated with PBM was effective in modulating inflammatory process and preventing the articular tissue degradation in the knees OA rats.


Chondroitin sulfate Glucosamine sulfate Photobiomodulation Articular cartilage Knee osteoarthritis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pelletier JP, Martel Pelletier J, Abramson SB (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis & Rheumatology:1237–1247Google Scholar
  2. 2.
    Messier SP, Callahan LF, Beavers DP et al (2017) Weight-loss and exercise for communities with arthritis in North Carolina (we-can): design and rationale of a pragmatic, assessor-blinded, randomized controlled trial. BMC Musculoskelet Disord 18(1):91. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. Int J Rheumatol 969012.
  4. 4.
    Woods B, Manca A, Weatherly H et al (2017) Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee. PLoS One 12:e0172749. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Terencio MC, Ferrándiz ML, Carceller MC et al (2016) Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. Biomed Pharmacother 79:120–128. CrossRefPubMedGoogle Scholar
  6. 6.
    Bishnoi M, Jain A, Hurkat P et al (2016) Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J 33:693–705. CrossRefPubMedGoogle Scholar
  7. 7.
    Bruyère O, Cooper C, Pelletier JP et al (2016) A consensus statement on the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) algorithm for the management of knee osteoarthritis—from evidence-based medicine to the real-life setting. Semin Arthritis Rheum 45(4 Suppl):S3–11. CrossRefPubMedGoogle Scholar
  8. 8.
    Kahan A, Uebelhart D, De Vathaire F et al (2009) Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 60:524–533. CrossRefPubMedGoogle Scholar
  9. 9.
    Vasiliadis HS, Tsikopoulos K (2017) Glucosamine and chondroitin for the treatment of osteoarthritis. World J Orthop 8:1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bruyère O, Burlet N, Delmas PD et al (2008) Evaluation of symptomatic slow-acting drugs in osteoarthritis using the GRADE system. BMC Musculoskelet Disord 9:165. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Monfort J, Pelletier JP, Garcia-Giralt N et al (2008) Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann Rheum Dis 67(6):735–740CrossRefPubMedGoogle Scholar
  12. 12.
    S. GN, Kamal W, George J et al (2017) Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med Sci 32:297–303.
  13. 13.
    Youssef EF, Muaidi QI, Shanb AA (2016) Effect of laser therapy on chronic osteoarthritis of the knee in older subjects. J Lasers Med Sci 7:112–119. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tomazoni SS, Leal-Junior EC, Pallotta RC et al (2017) Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med Sci 32:101–108. CrossRefPubMedGoogle Scholar
  15. 15.
    Barabás K, Bakos J, Zeitler Z et al (2014) Effects of laser treatment on the expression of cytosolic proteins in the synovium of patients with osteoarthritis. Lasers Surg Med 46:644–649. CrossRefPubMedGoogle Scholar
  16. 16.
    Soriano F, Campana V, Moya M et al (2006) Photobiomodulation of pain and inflammation in microcrystalline arthropathies: experimental and clinical results. Photomed Laser Surg 24:140–150CrossRefPubMedGoogle Scholar
  17. 17.
    Gur A, Sarac AJ, Cevik R, Altindag O et al (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35:229–235CrossRefPubMedGoogle Scholar
  18. 18.
    de Oliveira VL, Silva JA Jr, Serra AJ, Pallotta RC et al (2017) Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32:87–94. CrossRefPubMedGoogle Scholar
  19. 19.
    Mangueira NM, Xavier M, de Souza RA, Salgado MA et al (2015) Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed Laser Surg 33:145–153. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lin HD, He CQ, Luo QL, Zhang JL et al (2010) The effect of low-level laser to apoptosis of chondrocyte and caspases expression, including caspase-8 and caspase-3 in rabbit surgery-induced model of knee osteoarthritis. Rheumatol Int 32:759–766. CrossRefPubMedGoogle Scholar
  21. 21.
    Galois L, Etienne S, Grossin L, Watrin-Pinzano A et al (2004) Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthr Cartil 12:779–786CrossRefPubMedGoogle Scholar
  22. 22.
    Silva FS Jr, Yoshinari NH, Castro RR et al (2009) Combined glucosamine and chondroitin sulfate provides functional and structural benefit in the anterior cruciate ligament transection model. Clin Rheumatol 28:109–117. CrossRefPubMedGoogle Scholar
  23. 23.
    Assis L, Milares LP, Almeida T et al (2016) Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr Cartil 24:169–177. CrossRefPubMedGoogle Scholar
  24. 24.
    Pritzker KP, Gay S, Jimenez SA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14:13–29CrossRefPubMedGoogle Scholar
  25. 25.
    Bublitz C, Medalha C, Oliveira P et al (2014) Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transection in rats. Lasers Med Sci 29:1669–1678. CrossRefPubMedGoogle Scholar
  26. 26.
    Shen J, Abu-Amer Y, O'Keefe RJ et al (2017) Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 58:49–63. CrossRefPubMedGoogle Scholar
  27. 27.
    Mobasheri A, Rayman MP, Gualillo O et al (2017) The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol.
  28. 28.
    Nguyen LT, Sharma AR, Chakraborty C et al (2017) Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis. Int J Mol Sci 18:E601.
  29. 29.
    Kubo M, Ando K, Mimura T et al (2009) Chondroitin sulfate for the treatment of hip and knee osteoarthritis: current status and future trends. Life Sci 85:477–483. CrossRefPubMedGoogle Scholar
  30. 30.
    Goldring MB. (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Bianchi G, ed. Therapeutic Advances in Musculoskeletal Disease 4:269–285. doi:
  31. 31.
    Garstang SV, Stitik TP (2006) Osteoarthritis: epidemiology, risk factors, and pathophysiology. Am J Phys Med Rehabil 85(11 Suppl):S2–11 quiz S12-4. Review CrossRefPubMedGoogle Scholar
  32. 32.
    Sovani S, Grogan SP (2013) Osteoarthritis: detection, pathophysiology, and current/future treatment strategies. Orthop Nurs 32:25–36; quiz 37-38. CrossRefPubMedGoogle Scholar
  33. 33.
    Alves AC, Vieira R, Leal-Junior E et al (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther 15:R116CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    dos Santos SA, Alves AC, Leal-Junior EC et al (2014) Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med Sci 29:1051–1058. CrossRefPubMedGoogle Scholar
  35. 35.
    Luo Y, Sinkeviciute D, He Y et al (2017) The minor collagens in articular cartilage. Protein Cell 8:560–572. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou S, Thornhill TS, Meng F et al (2016) Influence of osteoarthritis grade on molecular signature of human cartilage. J Orthop Res 34:454–462. CrossRefPubMedGoogle Scholar
  37. 37.
    Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Marcella Sanches
    • 1
  • Lívia Assis
    • 1
    • 2
  • Cyntia Criniti
    • 1
  • Danilo Fernandes
    • 1
  • Carla Tim
    • 1
    • 2
  • Ana Claudia Muniz Renno
    • 1
  1. 1.Department of BioscienceFederal University of São PauloSantosBrazil
  2. 2.Department of Biomedical EngineeringBrazil UniversitySão PauloBrazil

Personalised recommendations