Lasers in Medical Science

, Volume 33, Issue 3, pp 479–487 | Cite as

Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms

  • Daniela Alejandra Cusicanqui Méndez
  • Eliezer Gutierrez
  • Evandro José Dionísio
  • Thaís Marchini Oliveira
  • Marília Afonso Rabelo Buzalaf
  • Daniela Rios
  • Maria Aparecida Andrade Moreira Machado
  • Thiago Cruvinel
Original Article


Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjuvant treatment of dental caries, although there are no well-defined protocols to its clinical application. This study aimed to evaluate the influence of aPDT on the viability of microorganisms, vitality of biofilms, and lactic acid production of dentin caries microcosms. Biofilms were grown on bovine dentin discs in anaerobic conditions at 37 °C for 5 days, inoculating infected carious dentin in modified McBain medium plus 1% sucrose. The biofilms were treated by the combination of deionized water or 100 mg L−1 methylene blue (MB) with 0, 37.5, or 75 J cm−2 LED at 630 nm. The counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by colony-forming units (CFU). The vitality of microbial cells in intact biofilms was measured by confocal laser scanning microscope (CLSM). The lactic acid production was analyzed by enzymatic spectrophotometry at 340 nm. Statistical analysis was conducted by Kruskal-Wallis and post hoc Dunn’s tests (P < 0.05). MB and 37.5 J cm−2 LED alone did not interfere in the viability of microorganisms, unlike 75 J cm−2 LED alone that decreased the total microorganism and lactobacillus counts. The combination of MB and 75 J cm−2 LED reduced the viability of all microorganisms and the vitality of intact biofilms. The production of lactic acid was statistically lower in all treatment groups in comparison with that of the control (no treatment), except for MB alone. Therefore, the MB-mediated aPDT was effective in controlling the viability, vitality and the acidogenicity of dentin caries microcosms.


Dental caries Dentin Photochemotherapy Methylene blue LED Antimicrobial photodynamic therapy 



The authors thank Drs. Rob Exterkate, Rodrigo Cardoso Oliveira, and Vanderlei Salvador Bagnato for their collaboration in infrastructure and Dr. Marcia Graeff and Veridiana Lopes Rizzato for their support during CSLM analysis. This research was supported by the São Paulo Research Foundation (grant no. 2014/10897-0, no. 2014/22238-1, and no. 2015/08595-9).

Compliance with ethical standards

This research protocol was approved by the Committee for Ethics in Human Research of the Bauru School of Dentistry (CAAE: 34559314.6.0000.5417), following the ethical standards of the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lula ECO, Almeida LJS, Alves CMC, Monteiro-Neto V, Ribeiro CCC (2011) Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res 45(3):275–280CrossRefPubMedGoogle Scholar
  2. 2.
    Schwendicke F, Meyer-Lueckel H, Dörfer C, Paris S (2013) Attitudes and behaviour regarding deep dentin caries removal: a survey among German dentists. Caries Res 47(6):566–573CrossRefPubMedGoogle Scholar
  3. 3.
    Katz CR, de Andrade Mdo R, Lira SS, Ramos Vieira EL, Heimer MV (2013) The concepts of minimally invasive dentistry and its impact on clinical practice: a survey with a group of Brazilian professionals. Int Dent J 63(2):85–90CrossRefPubMedGoogle Scholar
  4. 4.
    Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S (2007) Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res 41(2):102–107CrossRefPubMedGoogle Scholar
  5. 5.
    Mittal S, Soni H, Sharma DK, Mittal K, Pathania V, Sharma S (2015) Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J Int Soc Prev Community Dent 5(4):268–275CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Araújo PV, Correia-Silva Jde F, Gomez RS, Massara Mde L, Cortes ME, Poletto LT (2015) Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods. Photodiagn Photody Ther 12(3):401–407CrossRefGoogle Scholar
  7. 7.
    Diniz IM, Horta ID, Azevedo CS, Elmadjian TR, Matos AB, Simionato MR, Marques MM (2015) Antimicrobial photodynamic therapy: a promise candidate for caries lesions treatment. Photodiagn Photodyn Ther 12(3):511–518CrossRefGoogle Scholar
  8. 8.
    Guglielmi CA, Simionato MR, Ramalho KM, Imparato JC, Pinheiro SL, Luz MA (2011) Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J Biomed Optics 16(8):088003CrossRefGoogle Scholar
  9. 9.
    Melo MA (2014) Photodynamic antimicrobial chemotherapy as a strategy for dental caries: building a more conservative therapy in restorative dentistry. Photomed Laser Surg 32(11):589–591CrossRefPubMedGoogle Scholar
  10. 10.
    Melo MA, Rolim JP, Zanin IC, Silva JJ, Paschoal AR, Ayala AP, Rodrigues LK (2014) A comparative study of the photosensitizer penetration into artificial caries lesions in dentin measured by the confocal Raman microscopy. Photochem Photobiol 90(1):183–188CrossRefPubMedGoogle Scholar
  11. 11.
    Cieplik F, Buchalla W, Hellwig E, Al-Ahmad A, Hiller KA, Maisch T, Karygianni L (2017) Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—a systematic review. Photodiagn Photodyn Ther 18:54–62CrossRefGoogle Scholar
  12. 12.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28CrossRefPubMedGoogle Scholar
  13. 13.
    Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707CrossRefPubMedGoogle Scholar
  14. 14.
    Sridharan G, Shankar AA (2012) Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16(2):251–255CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Steiner-Oliveira C, Longo PL, Aranha AC, Ramalho KM, Mayer MP, de Paula Eduardo C (2015) Randomized in vivo evaluation of photodynamic antimicrobial chemotherapy on deciduous carious dentin. J Biomed Optics 20(10):108003CrossRefGoogle Scholar
  17. 17.
    Neves PA, Lima LA, Rodrigues FC, Leitão TJ, Ribeiro CC (2016) Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz Oral Res 30(1):e47CrossRefGoogle Scholar
  18. 18.
    Baptista A, Kato IT, Prates RA, Suzuki LC, Raele MP, Freitas AZ, Ribeiro MS (2012) Antimicrobial photodynamic therapy as a strategy to arrest enamel demineralization: a short-term study on incipient caries in a rat model. Photochem Photobiol 88(3):584–589CrossRefPubMedGoogle Scholar
  19. 19.
    Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK (2012) The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B 106:40–46CrossRefPubMedGoogle Scholar
  21. 21.
    Schneider M, Kirfel G, Berthold M, Frentzen M, Krause F, Braun A (2012) The impact of antimicrobial photodynamic therapy in an artificial biofilm model. Lasers Med Sci 27(3):615–620CrossRefPubMedGoogle Scholar
  22. 22.
    de Freitas-Pontes KM, Gomes CE, de Carvalho BM, Sabóia Rde S, Garcia BA (2014) Photosensitization of in vitro biofilms formed on denture base resin. J Prosthet Dent 112(3):632–637CrossRefPubMedGoogle Scholar
  23. 23.
    Sissons CH (1997) Artificial dental plaque biofilm model systems. Adv Dent Res 11(1):110–126CrossRefPubMedGoogle Scholar
  24. 24.
    McBain AJ, Sissons C, Ledder RG, Sreenivasan PK, De Vizio W, Gilbert P (2005) Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98(3):624–634CrossRefPubMedGoogle Scholar
  25. 25.
    Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40(1):41–47CrossRefPubMedGoogle Scholar
  26. 26.
    Deng DM, Hoogenkamp MA, Ten Cate JM, Crielaard W (2009) Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods 77(1):67–71CrossRefPubMedGoogle Scholar
  27. 27.
    Dige I, Nilsson H, Kilian M, Nyvad B (2007) In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115(6):459–467CrossRefPubMedGoogle Scholar
  28. 28.
    Zaura-Arite E, van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80(5):1436–1440CrossRefPubMedGoogle Scholar
  29. 29.
    Sim CP, Dashper SG, Reynolds EC (2016) Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 50:1–11CrossRefPubMedGoogle Scholar
  30. 30.
    de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infec Immun 68(9):4839–4849CrossRefGoogle Scholar
  31. 31.
    Antunes LC, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(Pt 8):2271–2282CrossRefPubMedGoogle Scholar
  32. 32.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefPubMedGoogle Scholar
  33. 33.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Exterkate RA, Crielaard W, Ten Cate JM (2010) Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res 44(4):372–379CrossRefPubMedGoogle Scholar
  35. 35.
    Arthur RA, Waeiss RA, Hara AT, Lippert F, Eckert GJ, Zero DT (2013) A defined-multispecies microbial model for studying enamel caries development. Caries Res 47(4):318–324CrossRefPubMedGoogle Scholar
  36. 36.
    Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33(4):248–255CrossRefPubMedGoogle Scholar
  37. 37.
    Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90(3):294–303CrossRefPubMedGoogle Scholar
  38. 38.
    Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS (2016) Influence of the inoculum source on the cariogenicity of in vitro microcosm biofilms. Caries Res 50(2):97–103CrossRefPubMedGoogle Scholar
  39. 39.
    Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105PubMedGoogle Scholar
  40. 40.
    Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314CrossRefPubMedGoogle Scholar
  41. 41.
    Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110(52):21130–21135CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287CrossRefPubMedGoogle Scholar
  43. 43.
    Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa EA (2015) Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 60(12):1811–1820CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Daniela Alejandra Cusicanqui Méndez
    • 1
  • Eliezer Gutierrez
    • 1
  • Evandro José Dionísio
    • 1
  • Thaís Marchini Oliveira
    • 1
  • Marília Afonso Rabelo Buzalaf
    • 2
  • Daniela Rios
    • 1
  • Maria Aparecida Andrade Moreira Machado
    • 1
  • Thiago Cruvinel
    • 1
  1. 1.Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of DentistryUniversity of São PauloBauruBrazil
  2. 2.Department of Biological Sciences, Bauru School of DentistryUniversity of São PauloBauruBrazil

Personalised recommendations