Skip to main content

Advertisement

Log in

Photobiomodulation therapy by NIR laser in persistent pain: an analytical study in the rat

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Over the past three decades, physicians have used laser sources for the management of different pain conditions obtaining controversial results that call for further investigations. In order to evaluate the pain relieving possibilities of photobiomodulation therapy (PBMT), we tested two near infrared (NIR) laser systems, with different power, against various kinds of persistent hyperalgesia animal models. In rats, articular pain was reproduced by the intra-articular injection of sodium monoiodoacetate (MIA) and complete Freund’s adjuvant (CFA), while compressive neuropathy was modelled by the chronic constriction injury of the sciatic nerve (CCI). In MIA and CFA models, (NIR) laser (MLS-Mphi, ASA S.r.l., Vicenza, Italy) application was started 14 days after injury and was performed once a day for a total of 13 applications. In MIA-treated animals, the anti-hyperalgesic effect of laser began 5 min after treatment and vanished after 60 min. The subsequent applications evoked similar effects. In CFA-treated rats, laser efficacy started 5 min after treatment and disappeared after 180 min. In rats that underwent CCI, two treatment protocols with similar fluence but different power output were tested using a new experimental device called Multiwave Locked System laser (MLS-HPP). Treatments began 7 days after injury and were performed during 3 weeks for a total of 10 applications. Both protocols reduced mechanical hyperalgesia and hindlimb weight bearing alterations until 60 min after treatment with a higher efficacy recorded for the animals treated using the higher power output. In conclusion, this study supports laser therapy as a potential treatment for immediate relief of chronic articular or neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MIA:

Monoiodoacetate

CFA:

Complete Freund’s adjuvant

CCI:

Chronic constriction injury

NIR:

Near infrared

PBMT:

Photobiomodulation therapy

References

  1. Hall GC, Carroll D, Parry D, McQuay HJ (2006) Epidemiology and treatment of neuropathic pain: the UK primary care perspective. Pain 122:156–162

    Article  PubMed  Google Scholar 

  2. Voscopoulos C, Lema M (2010) When does acute pain become chronic? Br J Anaesth 105(Supp1):i69–i85

    Article  PubMed  Google Scholar 

  3. Woolf CJ (2004) Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 140:441–451

    Article  PubMed  Google Scholar 

  4. Langley P, Müller-Schwefe G, Nicolaou A, Liedgens H, Pergolizzi J, Varrassi G (2010) The impact of pain on labor force participation, absenteeism and presenteeism in the European Union. J Med Econ 13(4):662–672. doi:10.3111/13696998.2010.529379

    Article  PubMed  Google Scholar 

  5. Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9(8):807–819. doi:10.1016/S1474-4422(10)70143-5

    Article  PubMed  Google Scholar 

  6. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, Glaser SE, Vallejo R (2008) Opioid complications and side effects. Pain Physician 11(2 Suppl):S105–S120

    PubMed  Google Scholar 

  7. Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D (2011) The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain 152(12):2836–2843. doi:10.1016/j.pain.2011.09.014

    Article  PubMed  Google Scholar 

  8. Torrance N, Ferguson JA, Afolabi E, Bennett MI, Serpell MG, Dunn KM, Smith BH (2013) Neuropathic pain in the community: more under-treated than refractory? Pain 154:690–699

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chow RT, Barnsley LB, Heller GZ (2006) The effect of 300mW, 830nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210

    Article  PubMed  Google Scholar 

  10. Enwemeka CS, Parker JC, Dowdy DC, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22:323–329

    Article  PubMed  Google Scholar 

  11. Plog FMW (1980) Biophysical application of the laser beam. In: Koebner HK (ed) Lasers in medicine. Wiley, Chichester, pp 21–37

    Google Scholar 

  12. McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172:3189–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P (1997) Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum 40(9):1670–1679

    Article  CAS  PubMed  Google Scholar 

  14. Di Cesare Mannelli L, Bani D, Bencini A, Brandi ML, Calosi L, Cantore M, Carossino AM, Ghelardini C, Valtancoli B, Failli P (2013) Therapeutic effects of the superoxide dismutase mimetic compound MnIIMe2DO2A on experimental articular pain in rats. Mediat Inflamm. doi:10.1155/2013/905360

  15. Butler SH, Godefroy F, Besson JM, Weil-Fugazza J (1992) A limited arthritic model for chronic pain studies in the rat. Pain 48:73–81

    Article  CAS  PubMed  Google Scholar 

  16. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  17. Leighton G, Rodriguez R, Hill R, Hughes J (1988) Kappa-opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat. Br J Pharmacol 93(3):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE (2003) Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr Cartil 11:821–830

    Article  CAS  PubMed  Google Scholar 

  19. Brouwers H, von Hegedus J, Toes R, Kloppenburg M, Ioan-Facsinay A (2015) Lipid mediators of inflammation in rheumatoid arthritis and osteoarthritis. Best Pract Res Clin Rheumatol 29(6):741–755

    Article  PubMed  Google Scholar 

  20. Garver MJ, Focht BC, Dials J, Rose M, Lucas AR, Devor ST, Emery CF, Hackshaw KV, Rejesky WJ (2014) Weight status and differences in mobility performance, pain symptoms, and physical activity in older, knee osteoarthritis patients. Arthritis. doi:10.1155/2014/375909

  21. Chang X, Wei C (2011) Glycolysis and rheumatoid arthritis. Int J Rheum Dis 14:217–222

    Article  PubMed  Google Scholar 

  22. Lipsky PE (2005) Rheumatoid arthritis. In: Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL (eds) Harrison's principles of internal medicine. McGraw Hill, New York, pp 1968–1977

    Google Scholar 

  23. Combe R, Bramwell S, Field MJ (2004) The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats? Neurosci Lett 370:236–240

    Article  CAS  PubMed  Google Scholar 

  24. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K (2003) Monoiodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol 31:619–624

    Article  CAS  PubMed  Google Scholar 

  25. Ivanavicius SP, Ball AD, Heapy CG, Westwood FR, Murray F, Read SJ (2007) Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterization. Pain 128:272–282

    Article  CAS  PubMed  Google Scholar 

  26. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFα levels in acute inflammation. Photomed Laser Surg 24:33–37

    Article  CAS  PubMed  Google Scholar 

  27. Bjordal JM, Lopes-Martins RAB, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40:76–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker J (1983) Relief from chronic pain by low-power laser irradiation. Neurosci Lett 43:339–344

    Article  CAS  PubMed  Google Scholar 

  29. Hansen HJ, Thorøe U (1990) Low power laser biostimulation of chronic orofacial pain. A double-blind placebo controlled cross-over study in 40 patients. Pain 43(2):169–179

    Article  CAS  PubMed  Google Scholar 

  30. Laakso EL, Cramond T, Richardson C, Galligan JP (1994) Plasma ACTH and â-endorphin levels in response to low level laser therapy (LLLT) for myofascial trigger points. Laser Ther 6:133–142

    Article  Google Scholar 

  31. Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381. doi:10.1089/pho.2010.2928

    Article  PubMed  Google Scholar 

  32. Sato T, Kawatani M, Takeshige C, Matsumoto I (1994) Ga-Al-As laser irradiation neuronal activity associated with inflammation. Acupuncture Electro 19:141–151

    Article  CAS  Google Scholar 

  33. Tsuchiya D, Kawatani M, Takeshige C (1994) Laser irradiation abates neuronal responses to nociceptive stimulation of rat-paw skin. Brain Res Bull 34:369–374

    Article  CAS  PubMed  Google Scholar 

  34. Jimbo K, Noda K, Suzuki H, Yoda K (1998) Suppressive effects of low-power laser irradiation on bradykinin evoked action potentials in cultured murine dorsal root ganglia cells. Neurosci Lett 240:93–96

    Article  CAS  PubMed  Google Scholar 

  35. Bortone F, Santos H, Albertini R, Pesquero J, Costa M, Soiva J (2008) Low-level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol 8:206–210

    Article  CAS  PubMed  Google Scholar 

  36. Couture R, Harrisson M, Vianna R, Cloutier F (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176

    Article  CAS  PubMed  Google Scholar 

  37. Kobiela Ketz A, Byrnes KR, Grunberg NE, Kasper CE, Osborne L, Pryor B, Tosini NL, Wu X, Anders JJ (2017) Characterization of macrophage/microglial activation and effect of photobiomodulation in the spinal nerve injury model of neuropathic pain. Pain Med 18(5):932–946

  38. Pacini A, Di Cesare Mannelli L, Bonaccini L, Ronzoni S, Bartolini A, Ghelardini C (2010) Protective effect of alpha7 nAChR: behavioural and morphological features on neuropathy. Pain 150(3):542–549

    Article  CAS  PubMed  Google Scholar 

  39. Di Cesare Mannelli L, Ghelardini C, Micheli L, Cialdai F, Vignali L, Fusi F, Monici M (2015) Effect of high power dual wavelength NIR laser emission in a rat model of compressive pain. Energy Health 14:12–17

    Google Scholar 

  40. Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M (2014) Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci 29(5):1593–1598. doi:10.1007/s10103-014-1552-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ASA Srl for providing the laser sources used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Di Cesare Mannelli.

Ethics declarations

All animal manipulations were carried out according to the Directive 2010/63/EU of the European parliament and of the European Union council (22 September 2010) on the protection of animals used for scientific purposes. Experiments involving animals have been reported according to ARRIVE guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This research was funded by the Italian Ministry of Instruction, University and Research (MIUR) and by the University of Florence.

Ethical approval

The ethical policy of the University of Florence complies with the Guide for the Care and Use of Laboratory Animals of the US National Institutes of Health (NIH Publication No. 85-23, revised 1996; University of Florence assurance number: A5278-01). Formal approval to conduct the experiments described was obtained from the Italian Ministry of Health (No. 54/2014-B) and from the Animal Subjects Review Board of the University of Florence.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micheli, L., Di Cesare Mannelli, L., Lucarini, E. et al. Photobiomodulation therapy by NIR laser in persistent pain: an analytical study in the rat. Lasers Med Sci 32, 1835–1846 (2017). https://doi.org/10.1007/s10103-017-2284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2284-9

Keywords

Navigation