Lasers in Medical Science

, Volume 32, Issue 5, pp 1009–1016 | Cite as

Interstitial PDT using diffuser fiber—investigation in phantom and in vivo models

  • Mirian D. Stringasci
  • Thereza C. Fortunato
  • Lilian T. Moriyama
  • José Dirceu Vollet Filho
  • Vanderlei S. Bagnato
  • Cristina Kurachi
Original Article

Abstract

Photodynamic therapy (PDT) has been used for local treatment of several types of tumors. Light penetration of biological tissue is one limiting factor in PDT, decreasing the success rates of the treatment of invasive and solid tumors. In those cases, a possible solution is to use interstitial PDT, in which both diffuser optical fibers are inserted into the tumor. The uniformity of the diffuser emission plays a crucial role in planning the delivery of the appropriate light fluence and in ensuring treatment success. In this study, we characterized a diffuser optical fiber concerning its homogeneity. We showed that the diffuser emission can be inhomogeneous and that the necrosis generated by interstitial PDT using such a diffuser for illumination is asymmetrical in volume as a result. This observation has relevant consequences in achieving success in PDT and phototherapies in general, as the delivered light fluence depends on adequate previous knowledge of the irradiation profile.

Keywords

Photodynamic therapy Interstitial iPDT Diffuser optical fiber Heterogeneous irradiation profile 

References

  1. 1.
    Small IV W, Buckley PR, Wilson TS, et al (2007) Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer.Google Scholar
  2. 2.
    Henderson BW, Gollnick SO (2003) Mechanistic principles of photodynamic therapy. In: Vo-Dinh T (ed) Biomed. Photonics handbook. pp 978–1004Google Scholar
  3. 3.
    Mobley J, Vo-Dinh T (2003) Optical properties of tissue. In: Biomed photonics handbook. doi:10.1117/1.1776177 Google Scholar
  4. 4.
    Arnfield MR, Tulip J, Chetner M, McPhee MS Optical dosimetry for interstitial photodynamic therapy. Med Phys 16:602–608. doi: 10.1118/1.596361
  5. 5.
    Murrer LHP, Marijnissen JPA, Star WM (1995) Ex vivo light dosimetry and Monte Carlo simulations for endobronchial photodynamic therapy 40:1807–1817.Google Scholar
  6. 6.
    Amdur RJ, Hara JO, Ph D, et al (1997) Tissue dosimetry of 632 nm light delivered through brachytherapy needles. 286:281–286.Google Scholar
  7. 7.
    Chang S, Buonaccorsi GA, Macrobert AJ, Bown SG (1997) Interstitial photodynamic therapy in the canine prostate with disulfonated aluminum phthalocyanine and 5-aminolevulinic acid-induced protoporphyrin IX. 98:89–98.Google Scholar
  8. 8.
    Marijnissen JPA, Kort WJ, Zondervan PE, et al. (1992) Interstitial photodynamic therapy in a rat liver metastasis model 1014:1005–1014.Google Scholar
  9. 9.
    Lowdell CP, Ash D V (1993) Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours. 1398–1403.Google Scholar
  10. 10.
    Martin NE, Hahn SM (2004) Interstitial photodynamic therapy for prostate cancer: a developing modality. doi: 10.1016/S1572-1000(04)00037-7
  11. 11.
    Svanberg K, Bendsoe N, Axelsson J, et al. (2010) Photodynamic therapy: superficial and interstitial 15:1–10. doi: 10.1117/1.3466579
  12. 12.
    Ishimaru A (1989) Diffusion of light in turbid material 28:Google Scholar
  13. 13.
    Grossweiner LI (1997) PDT light dosimetry revisited. J Photochem Photobiol B Biol 38:258–268CrossRefGoogle Scholar
  14. 14.
    Liebert MA, Melo CAS, Lima ALLA, et al (2001) Characterization of light penetration in rat tissues 19:175–179.Google Scholar
  15. 15.
    Wilson BC, Jacques SL (1990) Optical reflectance and transmittance of tissues: principles and applications 26:Google Scholar
  16. 16.
    Wilson BC, Patterson MS (1986) The physics of photodynamic therapy 31:327–360.Google Scholar
  17. 17.
    Flock ST, Jacques SL, Wilson BC et al (1992) Optical properties of Intralipid: a phantom medium for light propagation studies. Lasers Surg Med 12:510–519CrossRefPubMedGoogle Scholar
  18. 18.
    Dougher TJ (1987) Studies on the structure of porphyrins contained in Photofrin® II. Photochem Photobiol 46:569–573CrossRefGoogle Scholar
  19. 19.
    Melo CAS, Kurachi C, Grecco C, Sibata CH (2004) Pharmacokinetics of photogem using fluorescence monitoring in Wistar rats 73:183–188. doi: 10.1016/j.jphotobiol.2003.11.005
  20. 20.
    Ferreira J, Moriyama LT, Kurachi C, et al (2007) Experimental determination of threshold dose in photodynamic therapy in normal rat liver. 475:469–475. doi: 10.1002/lapl.200710014
  21. 21.
    Rendon A, Beck JC, Lilge L (2008) Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy. Phys Med Biol 53:1131–1149. doi:10.1088/0031-9155/53/4/021 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moseley H, Mclean C, Eljamel S (2007) In vitro light distributions from intracranial PDT balloons. Photodiagn Photodyn Ther 4:1–8. doi:10.1016/j.pdpdt.2007.06.003 CrossRefGoogle Scholar
  23. 23.
    Swartling J, Höglund OV, Hansson K et al (2016) Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model. J Biomed Opt 21:28002. doi:10.1117/1.JBO.21.2.028002 CrossRefPubMedGoogle Scholar
  24. 24.
    Tetard M, Vermandel M, Leroy H et al (2016) Interstitial 5-ALA photodynamic therapy and glioblastoma: preclinical model development and preliminary results. Photodiagn Photodyn Ther 13:218–224. doi:10.1016/j.pdpdt.2015.07.169 CrossRefGoogle Scholar
  25. 25.
    Rego Filho F, Caldas R, Kurachi C et al (2015) Possibility for the conjugated use of photodynamic therapy and electrosurgical devices. PLoS ONE Possibility Conjug use Photodyn Ther Electrosurgical Devices 10:1–9. doi:10.1371/journal.pone.0136194 Google Scholar
  26. 26.
    Hasselgren L, Galt S, Hard S (1990) Diffusive optical fiber ends for photodynamic therapy: manufacture and analysis 29:4481–4488.Google Scholar
  27. 27.
    Kozodoy RL, Lundahl SL, Bell D, Harrington JA (1994) Three-dimensional characterization of the light distribution from diffusing cylindrical optical-fiber tips. Appl Opt 33:6674–6682CrossRefPubMedGoogle Scholar
  28. 28.
    Vollet-filho JD, Andrioli M, Grecco C et al (2010) Non-homogeneous liver distribution of photosensitizer and its consequence for photodynamic therapy outcome. Photochem Photobiol 7:189–200. doi:10.1016/j.pdpdt.2010.07.002 Google Scholar
  29. 29.
    Johansson A, Bendsoe N, Svanberg K, et al (2006) Influence of treatment-induced changes in tissue absorption on treatment volume during interstitial photodynamic therapy. D:261–270. doi: 10.1016/j.mla.2006.08.002
  30. 30.
    Bargo PR, Koval G, Blair G (2005) In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy 10:1–15. doi: 10.1117/1.1921907
  31. 31.
    Potter WR, Wood L, Purcell E (1990) Factors effecting the light distributions of cylindrical diffusers 1201:292–297.Google Scholar
  32. 32.
    Parsa P, Jacques SL, Nishioka NS (1989) Optical properties of rat liver between 350 and 2200 nm. 28:Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Mirian D. Stringasci
    • 1
  • Thereza C. Fortunato
    • 1
  • Lilian T. Moriyama
    • 1
  • José Dirceu Vollet Filho
    • 1
  • Vanderlei S. Bagnato
    • 1
  • Cristina Kurachi
    • 1
  1. 1.Sao Carlos Institute of PhysicsUniversity of São PauloSão CarlosBrazil

Personalised recommendations