Skip to main content
Log in

Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen. In the present study, noninvasive Raman microspectroscopy was used for tracing the regeneration status of collagen during diabetic wound healing with MSCs. Wound tissues of normal mice, diabetic mice, and MSC-treated diabetic mice were subjected to Masson trichrome staining assay and submitted to spectroscopic analysis by Raman microspectroscopy after wounding 7, 14, and 21 days. Masson trichrome staining demonstrated that there was more collagen deposition in diabetic + MSCs group relative to diabetic group. The relative intensity of Raman collagen peak positions at 937, 1004, 1321, 1452, and 1662 cm−1 increased in MSC-treated diabetic group compared to diabetic group, although normal mice group had the highest relative intensity of collagen peak bands. Correlation analysis suggested that the spectral bands had a high positive correlation with the collagen intensity detected by Masson trichrome staining in wound tissues of three groups. Our results demonstrate that Raman microspectroscopy has potential application in rapidly and quantitatively assessing diabetic wound healing with MSCs by monitoring collagen variation, which may provide a novel method for the study of skin regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Federation ID, Atlas IDFD (2013) International Diabetes Federation. IDF diabetes atlas, 6th edn. International Diabetes Federation, Brussels

    Google Scholar 

  2. Sen CK, Gordillo GM, Roy S et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pecoraro RE, Reiber GE, Burgess EM (1990) Pathways to diabetic limb amputation: basis for prevention. Diabetes Care 13:513–521

    Article  CAS  PubMed  Google Scholar 

  4. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  CAS  PubMed  Google Scholar 

  5. Harper D, Young A, McNaught CE (2000) The physiology of wound healing. Surgery (Oxford) 32:445–450

    Article  Google Scholar 

  6. Eckes B, Zigrino P, Kessler D et al (2000) Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol 19:325–332

    Article  CAS  PubMed  Google Scholar 

  7. O’Loughlin A, Kulkarni M, Creane M et al (2013) Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 62:2588–2594

    Article  PubMed  PubMed Central  Google Scholar 

  8. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743

    Article  PubMed  Google Scholar 

  9. Lee CH, Chang SH, Chen WJ et al (2015) Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci 439:88–97

    Article  CAS  PubMed  Google Scholar 

  10. Amos PJ, Kapur SK, Stapor PC et al (2010) Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng A 16:1595–1606

    Article  CAS  Google Scholar 

  11. Dabiri G, Heiner D, Falanga V (2013) The emerging use of bone marrow-derived mesenchymal stem cells in the treatment of human chronic wounds. Exp Opin Emerg Drugs 18:405–419

    Article  CAS  Google Scholar 

  12. Nakamura Y, Ishikawa H, Kawai K et al (2013) Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 34:9393–9400

    Article  CAS  PubMed  Google Scholar 

  13. Lee KB, Choi J, Cho SB et al (2011) Topical embryonic stem cells enhance wound healing in diabetic rats. J Orthop Res 29:1554–1562

    Article  CAS  PubMed  Google Scholar 

  14. Biazar E, Keshel SH (2013) The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. J Biomed Nanotechnol 9:1471–1482

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Chen R, Zeng H et al (2007) Raman spectroscopy of Chinese human skin in vivo. Chin Opt Lett 5:105–107

    CAS  Google Scholar 

  16. Matousek P, Draper ERC, Goodship AE et al (2006) Noninvasive Raman spectroscopy of human tissue in vivo. Appl Spectrosc 60:758–763

    Article  CAS  PubMed  Google Scholar 

  17. Hata TR, Scholz TA, Ermakov IV et al (2000) Non-invasive Raman spectroscopic detection of carotenoids in human skin. J Investig Dermatol 115:441–448

    Article  CAS  PubMed  Google Scholar 

  18. Caspers PJ, Lucassen GW, Carter EA et al (2001) In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Investig Dermatol 116:434–442

    Article  CAS  PubMed  Google Scholar 

  19. Kozielski M, Buchwald T, Szybowicz M et al (2011) Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping. J Mater Sci Mater Med 22:1653–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391

    Article  CAS  PubMed  Google Scholar 

  21. Leikin S, Parsegian VA, Yang WH et al (1997) Raman spectral evidence for hydration forces between collagen triple helices. Proc Natl Acad Sci 94:11312–11317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kunstar A, Otto C, Karperien M et al (2011) Raman microspectroscopy: a noninvasive analysis tool for monitoring of collagen-containing extracellular matrix formation in a medium-throughput culture system. Tissue EngPart C: Methods 17:737–744

    Article  CAS  Google Scholar 

  23. Manautou JE, Nowicki MT, Aleksunes LM et al (2008) Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett 2:11–17

    Article  PubMed  Google Scholar 

  24. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–417

    Article  CAS  PubMed  Google Scholar 

  25. Xie N, Wu S, Wang X (2007) Advancement in diabetes animal models. J Xinxiang Med Coll 24:629–632

    CAS  Google Scholar 

  26. Argôlo Neto NM, Del Carlo RJ, Monteiro BS et al (2012) Role of autologous mesenchymal stem cells associated with platelet-rich plasma on healing of cutaneous wounds in diabetic mice. Clin Exp Dermatol 37:544–553

    Article  PubMed  Google Scholar 

  27. Wang H, Lee AMD, Lui H et al (2013) A method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imaging. Sci Rep 3:2966

    Article  PubMed Central  Google Scholar 

  28. Li SX, Zhang YJ, Zeng QY et al (2014) Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine. Laser Phys Lett 11:065603

    Article  Google Scholar 

  29. Groth B, Haber R, Mann A (2014) Raman micro-spectroscopy of polytype and structural changes in 6H-silicon carbide due to machining. Int J Appl Ceram Technol 12:795

    Article  Google Scholar 

  30. Janko M, Davydovskaya P, Bauer M et al (2010) Anisotropic Raman scattering in collagen bundles. Opt Lett 35:2765–2767

    Article  CAS  PubMed  Google Scholar 

  31. Shi P, Liu H, Deng X et al (2015) Label-free nonenzymatic glycation monitoring of collagen scaffolds in type 2 diabetic mice by confocal Raman microspectroscopy. J Biomed Opt 20:027002–027002

    Article  Google Scholar 

  32. Coelho NPMF, Raniero L, Costa CLS et al (2014) FT-Raman spectroscopic study of skin wound healing in diabetic rats treated with Cenostigma macrophyllum Tul. Revista Brasileira de Engenharia Biomédica 30:47–53

    Article  Google Scholar 

  33. Nguyen TT, Gobinet C, Feru J et al (2012) Characterization of type I and IV collagens by Raman microspectroscopy: identification of spectral markers of the dermo-epidermal junction. J Spectrosc 27:421–427

    Article  CAS  Google Scholar 

  34. Ali SM, Bonnier F, Tfayli A et al (2013) Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing. J Biomed Opt 18:061202–061202

    Article  PubMed  Google Scholar 

  35. Cheng WT, Liu MT, Liu HN et al (2005) Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech 68:75–79

    Article  CAS  PubMed  Google Scholar 

  36. Bonifacio A, Sergo V (2010) Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib Spectrosc 53:314–317

    Article  CAS  Google Scholar 

  37. Vigano C, Manciu L, Buyse F et al (2000) Attenuated total reflection IR spectroscopy as a tool to investigate the structure, orientation and tertiary structure changes in peptides and membrane proteins. Pept Sci 55:373–380

    Article  CAS  Google Scholar 

  38. Bryan MA, Brauner JW, Anderle G et al (2007) FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding. J Am Chem Soc 129:7877–7884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anigbogu ANC, Williams AC, Barry BW et al (1995) Fourier transform Raman spectroscopy of interactions between the penetration enhancer dimethyl sulfoxide and human stratum corneum. Int J Pharm 125:265–282

    Article  CAS  Google Scholar 

  40. Bodanese B, Silveira FL, Zangaro RA et al (2012) Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis. Photomed Laser Surg 30:381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanping Liu.

Ethics declarations

The Ethical Committee for Animal Experiments of South China Normal University approved all described experimental procedures.

Conflict of interest

The authors declare that they have no conflict of interest.

Financial support

This work was supported by the National Natural Science Foundation of China (No. 81171379 and No. 61335011). This study was also supported by the College of Biophotonics of South China Normal University for animal experiments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Liu, H., Deng, X. et al. Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs. Lasers Med Sci 32, 1131–1141 (2017). https://doi.org/10.1007/s10103-017-2218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2218-6

Keywords

Navigation