Skip to main content

Advertisement

Log in

The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey’s HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakaguchi RL, Powers JM (2012) Craig’s restorative dental materials, 13th edn. Mosby, Philadelphia, pp 231–234

    Google Scholar 

  2. de Oliveira A-RF, Fonseca RG, Haneda IG, de Almeida-Júnior AA, Adabo GL (2012) The effect of different surface treatments on the shear bond strength of luting cements to titanium. J Prosthet Dent 108:370–376

    Article  Google Scholar 

  3. Akin H, Güney U (2012) Effect of various surface treatments on the retention properties of titanium to implant restorative cement. Lasers Med Sci 27:1183–1187

    Article  PubMed  Google Scholar 

  4. Wahl C, França FM, Brito RB Jr, Basting RT, Smanio H (2008) Assessment of the tensile strength of hexagonal abutments using different cementing agents. Braz Oral Res 22:299–304

    Article  PubMed  Google Scholar 

  5. Chaar MS, Att W, Strub JR (2011) Prosthetic outcome of cement retained implant-supported fixed dental restorations: a systematic review. J Oral Rehabil 38:697–711

    Article  CAS  PubMed  Google Scholar 

  6. Sheets JL, Wilcox C, Wilwerding T (2008) Cement selection for cement-retained crown technique with dental implants. J Prosthodont 17:92–96

    Article  PubMed  Google Scholar 

  7. Nakamura T, Wakabayashi K, Kinuta S, Nishida H, Miyamae M, Yatani H (2010) Mechanical properties of new self-adhesive resin-based cement. J Prosthodont Res 54:59–64

    Article  PubMed  Google Scholar 

  8. Attar N, Tam LE, McComb D (2003) Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent 89:127–134

    Article  CAS  PubMed  Google Scholar 

  9. Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P (2015) Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface. J Adv Prosthodont 7:249–256

    Article  PubMed  PubMed Central  Google Scholar 

  10. Asmussen E, Peutzfeldt A (1998) Surface energy characteristics of adhesive monomers. Dent Mater 14:21–28

    Article  CAS  PubMed  Google Scholar 

  11. Elsaka SE (2013) Effect of surface pretreatments on the bonding strength and durability of self-adhesive resin cements to machined titanium. J Prosthet Dent 109:113–120

    Article  CAS  PubMed  Google Scholar 

  12. Fonseca RG, de Almeida JG, Haneda IG, Adabo GL (2009) Effect of metal primers on bond strength of resin cements to base metals. J Prosthet Dent 101:262–268

    Article  CAS  PubMed  Google Scholar 

  13. Fawzy AS, El-Askary FS (2009) Effect acidic and alkaline/heat treatments on the bond strength of different luting cements to commercially pure titanium. J Dent 37:255–263

    Article  CAS  PubMed  Google Scholar 

  14. Tsuchimoto Y, Yoshida Y, Takeuchi M, Mine A, Yatani H, Tagawa Y, Van Meerbeek B, Suzuki K, Kuboki T (2006) Effect of surface pre-treatment on durability of resin-based cements bonded to titanium. Dent Mater 22:545–552

    Article  CAS  PubMed  Google Scholar 

  15. Zinelis S (2007) Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM). Dent Mater 23:601–607

    Article  CAS  PubMed  Google Scholar 

  16. Ntasia A, Muellerb WD, Eliadesa G, Zinelis S (2010) The effect of electro discharge machining (EDM) on the corrosion resistance of dental alloys. Dent Mater 26:237–245

    Article  Google Scholar 

  17. Koh M, Park JB, Jang YJ, Ko Y (2013) The effect of pretreating resorbable blast media titanium discs with an ultrasonic scaler or toothbrush on the bacterial removal efficiency of brushing. J Periodontal Implant Sci 43:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  Google Scholar 

  19. Kim JT, Cho SA (2009) The effects of laser etching on shear bond strength at the titanium ceramic interface. J Prosthet Dent 101:101–106

    Article  CAS  PubMed  Google Scholar 

  20. Baygin O, Korkmaz FM, Tüzüner T, Tanriver M (2012) The effect of different enamel surface treatments on the microleakage of fissure sealants. Lasers Med Sci 27:153–160

    Article  PubMed  Google Scholar 

  21. Korkmaz FM, Bagis B, Ozcan M, Durkan R, Turgut S, Ates SM (2013) Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion. J Adv Prosthodont 5:287–295

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murray AK, Atrill DC, Dickinson MR (2005) The effects of XeCl laser etching of Ni-Cr alloy on bond strengths to composite resin: a comparison with sandblasting procedures. Dent Mater 21:538–544

    Article  CAS  PubMed  Google Scholar 

  23. Mailoa J, Lin GH, Chan HL, MacEachern M, Wang HL (2014) Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis. J Periodontol 85:1194–1202

    Article  PubMed  Google Scholar 

  24. Leja C, Geminiani A, Caton J, Romanos GE (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28:1435–1440

    Article  PubMed  Google Scholar 

  25. Erdogan M, Oktem B, Kalaycıoglu H, Yavas S, Mukhopadhyay PK, Eken K, Ozgören K, Aykac Y, Tazebay UH, Ilday FO (2011) Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19(11):10986–10996

    Article  CAS  PubMed  Google Scholar 

  26. Kerse C, Kalaycıoglu H, Elahi P, Cetin B, Kesim DK, Akcaalan O, Yavas S, Asık MD, Oktem B, Hoogland H, Holzwarth R, Ilday FO (2016) Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537(7618):84–88

    Article  CAS  PubMed  Google Scholar 

  27. Hoy CL, Ferhanoglu O, Yildirim M, Kim KH, Karajanagi SS, Khan KMC, Kobler JB, Zeitels SM, Ben-Yakar A (2014) Clinical ultrafast laser surgery: recent advances and future directions. IEEE J Sel Top Quantum Electron 20:7100814

    Article  Google Scholar 

  28. De Almeida-Júnior AA, Fonseca RG, Haneda IG, De Oliveira A-RF, Adabo GL (2010) Effect of surface treatments on the bond strength of a resin cement to commercially pure titanium. Braz Dent J 21:111–116

    Article  PubMed  Google Scholar 

  29. Akyil MS, Uzun IH, Bayindir F (2010) Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg 28:801–808

    Article  CAS  PubMed  Google Scholar 

  30. Akin H, Tugut F, Topcuoglu S, Kirmali O (2013) Effects of sandblasting and laser irradiation on shear bond strength of low-fusing porcelain to titanium. J Adhes Dent 15:55–63

    CAS  PubMed  Google Scholar 

  31. Kurt M, Külünk T, Ural C, Külünk Ş, Danişman Ş, Savaş S (2013) The effect of different surface treatments on cement-retained implant-supported restorations. J Oral Implantol 39:44–51

    Article  PubMed  Google Scholar 

  32. Xu HHK, Kelly JR, Jahanmir S, Thompson VP, Rekow ED (1997) Enamel subsurface damage due to tooth preparation with diamonds. J Dental Res 76:1698–1706

    Article  CAS  Google Scholar 

  33. Boehm R, Rich J, Webster J, Janke S (1977) Thermal stress effects and surface cracking associated with laser use on human teeth. J Biomech Eng 99:189–194

    Article  Google Scholar 

  34. Abreu A, Loza MA, Elias A, Mukhopadhyay S, Rueggeberg FA (2007) Effect of metal type and surface treatment on in vitro tensile strength of copings cemented to minimally retentive preparations. J Prosthet Dent 98:199–207

    Article  CAS  PubMed  Google Scholar 

  35. Mutluay Unal S, Ozkir SE, Seyfioglu Polat Z, Guven S, Asutay H (2017) The effect of ytterbium- doped fiber laser with different parameters on physical properties of zirconia surface. Photomed Laser Surg 35:157–163

    Article  CAS  PubMed  Google Scholar 

  36. Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper Dent 34:280–287

    Article  PubMed  Google Scholar 

  37. Ohkubo C, Watanabe I, Hosoi T, Okabe T (2000) Shear bond strengths of polymethyl methacrylate to cast titanium and cobalt-chromium frameworks using five metal primers. J Prosthet Dent 83:50–57

    Article  CAS  PubMed  Google Scholar 

  38. Lim BS, Heo SM, Lee YK, Kim CW (2003) Shear bond strength between titanium alloys and composite resin: sandblasting versus fluoride-gel treatment. J Biomed Mater Res B Appl Biomater 64:38–43

    Article  PubMed  Google Scholar 

  39. Cobb DS, Vargas MA, Fridrich TA, Bouschlicher MR (2000) Metal surface treatment: characterization and effect on composite-to-metal bond strength. Oper Dent 25:427–433

    CAS  PubMed  Google Scholar 

  40. Kern M, Thompson VP (1994) Influence of prolonged thermalcycling and water storage on bond strength of composite to NiCr alloy. Dent Mater 9:19–25

    Article  Google Scholar 

  41. ISO 10477 (2004) Dentistry polymer-based crown and bridge materials. International Standards Organization (ISO), Geneva

    Google Scholar 

  42. Matsumura H, Yanagida H, Tanoue N, Atsuta M, Shimoe S (2001) Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J Prosthet Dent 86:315–319

    Article  CAS  PubMed  Google Scholar 

  43. Miyakawa O, Watanabe K, Okawa S, Kanatani M, Nakano S, Kobayashi M (1996) Surface contamination of titanium by abrading treatment. Dent Mater J 15:11–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Dr. Tamer Tuzuner for his valuable assistance with the statistical analysis, and Umit Unal from Implance (Trabzon, Turkey) for preparing the titanium discs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Mehmet Korkmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, S.M., Korkmaz, F.M., Caglar, I.S. et al. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium. Lasers Med Sci 32, 1121–1129 (2017). https://doi.org/10.1007/s10103-017-2216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2216-8

Keywords

Navigation