Skip to main content
Log in

Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Neuropathic pain can be defined as the pain initiated or caused by a primary lesion or dysfunction of the central or peripheral nervous system. Photobiomodulation therapy (PBM) stands out among the physical therapy resources used for analgesia. However, application parameters, especially the energy density, remain controversial in the literature. Therefore, this study aimed to investigate the PBM effect, in different energy densities to control neuropathic pain in mice. Fifty (50) mice were induced to neuropathy by chronic constriction surgery of the sciatic nerve (CCI), treated with PBM (808 nm), and divided into five groups: GP (PBM simulation), GS (sham), GL10, GL20, GL40 (energy density of 10, 20, and 40 J/cm2, respectively). The evaluations were carried out using the hot plate test and Randall and Selitto test, before and after the CCI surgery, every 15 days during the 90 days experiment. β-Endorphin blood dosage was also tested. For both the hot plate and Randall and Selitto tests, the GL20 and GL40 groups presented reduction of the nociceptive threshold from the 30th day of treatment, the GL10 group only after day 75, and the GP group did not show any improvement throughout the experiment. The β-endorphin dosage was higher for all groups when compared to the GP group. However, only the GL20 group and GL40 presented a significant increase. This study demonstrates that PBM in higher energy density (20, 40 J/cm2) is more effective in the control of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  PubMed  Google Scholar 

  2. Dworkin RH et al (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clinic proceedings. Mayo Clin 85(3):3–14

    Article  Google Scholar 

  3. Besson JM (1999) The neurobiology of pain. Lancet 353(9164):1610–1615

    Article  CAS  PubMed  Google Scholar 

  4. Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci U S A 96(14):7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costigan M, Scholz J, Woolf JC (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Rev Neurosci 32:1–32

    Article  CAS  Google Scholar 

  6. Dickenson A, Suzuki R (2005) Targets in pain and analgesia. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, New York

    Google Scholar 

  7. Hunt SP, Bester H (2005) The ascending pain pathways. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, New York, pp 115–137

    Chapter  Google Scholar 

  8. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  CAS  PubMed  Google Scholar 

  9. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218

    Article  CAS  PubMed  Google Scholar 

  10. Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H et al (2015) Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 156(7):1320–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W et al (2015) Effects of chronic doxepin and amitriptyline administration in naive mice and in neuropathic pain mice model. Neuroscience 294:38–50

    Article  CAS  PubMed  Google Scholar 

  12. Kim KJ, Yoon YW, Chung JM (1997) Comparison of three rodent neuropathic pain models. Exp Brain Res 113(2):200–206

    Article  CAS  PubMed  Google Scholar 

  13. Reis FJ, Rocha NP (2006) Efeito analgésico de longa duração da dipirona sobre a hiperalgesia persistente induzida pela constrição do nervo ciático em ratos: participação do óxido nítrico. Rev Bras Cienc Farm São Paulo 42(2):513–522

    CAS  Google Scholar 

  14. Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta 1802(10):924–933

    Article  CAS  PubMed  Google Scholar 

  15. Serpell MG (2002) Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial. Pain 99(3):557–566

    Article  CAS  PubMed  Google Scholar 

  16. Meier T, Wasner G, Faust M, Kuntzer T, Ochsner F, Hueppe M et al (2003) Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain 106(1-2):151–158

    Article  CAS  PubMed  Google Scholar 

  17. Schestatsky P, Llado-Carbo E, Casanova-Molla J, Alvarez-Blanco S, Valls-Sole J (2008) Small fibre function in patients with meralgia paresthetica. Pain 139(2):342–348

    Article  PubMed  Google Scholar 

  18. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  19. Lorenzini L, Giuliani A, Giardino L, Calza L (2010) Laser acupuncture for acute inflammatory, visceral and neuropathic pain relief: an experimental study in the laboratory rat. Res Vet Sci 88(1):159–165

    Article  CAS  PubMed  Google Scholar 

  20. Meireles A et al (2012) Avaliação do papel de opioides endógenos na analgesia do laser de baixa potência, 820 nm, em joelho de ratos Wistar. Rev Dor São Paulo 13(2):152–155

  21. Laakso EL, Cabot PJ (2005) Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (PBM) in inflamed paws of Wistar rat. Photomed Laser Surg 23(1):32–35

    Article  PubMed  Google Scholar 

  22. Bjordal JM, Baxter GD (2006) Ineffective dose and lack of laser output testing in laser shoulder and neck studies. Photomed Laser Surg 24(4):533–534

    PubMed  Google Scholar 

  23. Campana EA et al (1999) The relative effects of He Ne laser and meloxicam on experimentally induced inflammation. Laser Ther 11(1):36–41

    Article  Google Scholar 

  24. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17

    Article  CAS  PubMed  Google Scholar 

  25. Jameie SB, Masoumipoor M, Janzadeh A, Nasirinezhad F, Kerdari M, Soleimani M (2014) Combined therapeutic effects of low power laser (980nm) and CoQ10 on neuropathic pain in adult male rat. Med J Islam Repub Iran 28:58

    PubMed  PubMed Central  Google Scholar 

  26. Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M (2014) Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci 29(5):1593–1598

    Article  CAS  PubMed  Google Scholar 

  27. Kuraishi Y et al (1983) Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: the differences in mechanical and thermal analgesic tests. Brain Res 273:245–252

    Article  CAS  PubMed  Google Scholar 

  28. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111(4):409–419

    CAS  PubMed  Google Scholar 

  29. Griffis CA, Compton P, Doering L (2006) The effect of pain on leucocyte cellular adhesion molecules. Biol Res Nurs 7(4):297–312

    Article  PubMed  Google Scholar 

  30. Dray A (2008) Neuropathic pain: emerging treatments. Br J Anaesth 101(1):48–58

    Article  CAS  PubMed  Google Scholar 

  31. Martins DF et al (2013) Ankle joint mobilization affects postoperative pain through peripheral and central adenosine A1 receptors. Phys Ther 93(3):401–412

  32. Ward U, Nilsson UG (2013) Acupuncture for postoperative pain in day surgery patients undergoing arthroscopic shoulder surgery. Clin Nurs Res 22(1):130–136

    Article  PubMed  Google Scholar 

  33. Mitchinson AR et al (2007) Acute postoperative pain management using massage as an adjuvant therapy: a randomized trial. Arch Surg 142(12):1158–1167

    Article  PubMed  Google Scholar 

  34. Cidral-Filho et al (2014) Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med Sci 29:695–702

    Article  PubMed  Google Scholar 

  35. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802

    Article  PubMed  Google Scholar 

  36. Medalha CC, Di Gangi GC, Barbosa CB, Fernandes M, Aguiar O, Faloppa F et al (2012) Low-level laser therapy improves repair following complete resection of the sciatic nerve in rats. Lasers Med Sci 27(3):629–635

    Article  PubMed  Google Scholar 

  37. Yan W, Chow R, Armati PJ (2011) Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: implications for laser-induced analgesia. J Peripher Nerv Syst 16(2):130–135

    Article  PubMed  Google Scholar 

  38. Chow RT, Armati P, Laakso E-L, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381

    Article  PubMed  Google Scholar 

  39. Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: Implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 12(1):28–39

    Article  PubMed  Google Scholar 

  40. Yamamoto H, Ozaki A, Iguchi N, Kinoshita S (1988) Antinociceptive effects of laser irradiation of Hoku point in rats. Pain Clin 8:43–48

    Google Scholar 

  41. Tiphlova OA, Karu TI (1987) Action of monochromatic low-intensity visible light on growth of E. coli. Microbiology 60:626–630

    Google Scholar 

  42. Low L, Reed A (2001) Eletroterapia Explicada: Princípios e Prática, 3ath edn. Manole Ltda, Barueri-SP

    Google Scholar 

  43. Bertolini GR, Artifon EL, Silva TS, Cunha DM, Vigo PR (2011) Low-level laser therapy, at 830 nm, for pain reduction in experimental model of rats with sciatica. Arq Neuropsiquiatr 69(2b):356–359

    Article  PubMed  Google Scholar 

  44. Cotler HB, Chow RT, Hamblin MR, Carroll J (2015) The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2(5):00068

  45. de Andrade AL, Bossini PS, Parizotto NA (2016) Use of low level laser therapy to control neuropathic pain: a systematic review. J Photochem Photobiol B 164:36–42

    Article  PubMed  Google Scholar 

  46. Matera JM, Tatarunas AC, Oliveira SM (2003) Uso do laser arseneto de gálio (904nm) após excisão artroplástica da cabeça do fêmur em cães. Acta Cir Bras 18(2):102–106

    Article  Google Scholar 

  47. Chavantes MR (2009) Laser em biomedicina princípios e prática: guia para iniciantes, pesquisadores e discentes na área de saúde e exatas. Atheneu, São Paulo

    Google Scholar 

  48. ME K, Kazemikho N, Aghili R, Forough B, Lajevardi M, Dabaghian FH, Goushegir A, Malek M (2011) Diabetic distal symmetric polyneuropathy: effect of low-intensity laser therapy. Lasers Med Sci 26(6):831–835

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Laura Martins de Andrade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, A.L.M., Bossini, P.S., do Canto De Souza, A.L.M. et al. Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci 32, 865–872 (2017). https://doi.org/10.1007/s10103-017-2186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2186-x

Keywords

Navigation