Advertisement

Lasers in Medical Science

, Volume 33, Issue 1, pp 221–225 | Cite as

The photobiomodulation effect of higher-fluence 808-nm laser therapy with a flat-top handpiece on the wound healing of the earthworm Dendrobaena veneta: a brief report

  • Andrea Amaroli
  • Sara Ferrando
  • Reem Hanna
  • Lorenzo Gallus
  • Alberico Benedicenti
  • Sonia Scarfì
  • Marina Pozzolini
  • Stefano Benedicenti
Brief Report

Introduction

Photobiomodulation (PBM) is a useful tool employed in wound healing [1]. Several studies in vitro indicate that PBM with <500 mW average power and 3–10 J/cm2 fluences enhances the wound healing process in a wide range of conditions in humans [2]. However, a lot of confusion still reigns in this field since, to date, the correct laser parameters of deposited energy density that effectively promote cell rescue without significant side effects are still elusive. To date, limited evidences suggest that the energy can be applied with the same efficiency from cellular to organismic level [3]. Furthermore, there are issues using low-power and fluence settings in the adoption of a standardized and worldwide use protocol. The interaction between a tissue and energy in the range of 600–1400 nm is based on scattering. When this type of energy goes through a tissue, a rapid decrease in its density can be observed [3]. Subsequently, it gets dispersed missing the target and failing a...

Notes

Compliance with ethical standards

Funding statement

Fund from any funding agency was not procured.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. In: Hamblin MR, Waynant RW, Anders J (eds) International society for optics and photonics. 614001–614001 - 12. doi: 10.1117/12.646294
  2. 2.
    Woodruff LD, Bounkeo JM, Brannon WM et al (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22(3):241–247. doi: 10.1089/1549541041438623 CrossRefPubMedGoogle Scholar
  3. 3.
    Benedicenti A, Amaroli A, Seting W, Mathews A, Benedicenti S (2015) Case studies on the use of a new flat-top handpiece for biomodulation in dentistry and medicine. J Laser Health Acad 2015:1–6Google Scholar
  4. 4.
    Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S (2015) Effect of 808 nm diode laser on swimming behavior, food vacuole formation and endogenous ATP production of Paramecium primaurelia (Protozoa). Photochem Photobiol 91(5):1150–1155. doi: 10.1111/php.12486 CrossRefPubMedGoogle Scholar
  5. 5.
    Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S (2016) 808-nm laser therapy with a flat-top handpiece photobiomodulates mitochondria activities of Paramecium primaurelia (Protozoa). Laser Med Sci 31(4):741–747. doi: 10.1007/s10103-016-1901-3 CrossRefGoogle Scholar
  6. 6.
    Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S (2015) The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: the effects of an 808nm infrared laser diode on cellular respiration. Altern Lab Anim 43(3):155–162PubMedGoogle Scholar
  7. 7.
    Amaroli A, Parker S, Dorigo G, Benedicenti A, Benedicenti S (2015) Paramecium: a promising non-animal bioassay to study the effect of 808 nm infrared diode laser photobiomodulation. Photomed Laser Surg 33(1):35–40. doi: 10.1089/pho.2014.3829 CrossRefPubMedGoogle Scholar
  8. 8.
    Rubin GM (2001) The draft sequences: comparing species. Nature 409(6822):820–821. doi: 10.1038/35057277 CrossRefPubMedGoogle Scholar
  9. 9.
    Cressey (2008) The year of the worm? Nature December 2008. doi: 10.1038/news.2008.1309
  10. 10.
    Scarfì S, Benatti U, Pozzolini M et al (2007) Ascorbic acid-pretreated quartz enhances cyclo-oxygenase-2 expression in RAW 264.7 murine macrophages. FEBS J 274:60–73. doi: 10.1111/j.1742-4658.2006.05564.x CrossRefPubMedGoogle Scholar
  11. 11.
    Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63(2):411–436. doi: 10.1124/pr.110.003293 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xiao-yan X (2011) Effects of earthworm activities on soil urease activities. J Anhui Agric Sci 2011:16Google Scholar
  13. 13.
    Shamirzaev B (2012) Functional properties of laser effects on morphology of liver, gall bladder and bile ducts in cholelithiasis. Med Health Sci J 10:56–61CrossRefGoogle Scholar
  14. 14.
    Moskvin S, Buylin V (2006) The base of laser therapy [Osnovi Lazernoi Terapii]. Triada Publishing House, MoscowGoogle Scholar
  15. 15.
    Burke JM (1974) Wound healing in Eisenia foetida (Oligochaeta). Cell Tissue Res 154(1):61–82. doi: 10.1007/BF00221072 CrossRefPubMedGoogle Scholar
  16. 16.
    Kurzen H, Wessler I, Kirkpatrick CJ, Kawashima K, Grando SA (2007) The non-neuronal cholinergic system of human skin. Horm Metab Res 39(2):125–135. doi: 10.1055/s-2007-961816 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Andrea Amaroli
    • 1
    • 2
  • Sara Ferrando
    • 1
  • Reem Hanna
    • 2
    • 3
  • Lorenzo Gallus
    • 1
  • Alberico Benedicenti
    • 2
  • Sonia Scarfì
    • 1
  • Marina Pozzolini
    • 1
  • Stefano Benedicenti
    • 1
  1. 1.Department of Earth, Environmental and Life SciencesUniversity of GenoaGenoaItaly
  2. 2.Department of Surgical Sciences and Integrated DiagnosticUniversity of GenoaGenoaItaly
  3. 3.Department of Oral Surgery, Dental InstituteKing’s College Hospital NHS Foundation TrustLondonUK

Personalised recommendations