Skip to main content

Advertisement

Log in

Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of the present study is to evaluate the effects of low-level laser therapy on the osseointegration process by comparing resonance frequency analysis measurements performed at implant placement and after 30 days and micro-computed tomography images in irradiated vs nonirradiated rabbits. Fourteen male New Zealand rabbits were randomly divided into two groups of seven animals each, one control group (nonirradiated animals) and one experimental group that received low-level laser therapy (Thera Lase®, aluminum-gallium-arsenide laser diode, 10 J per spot, two spots per session, seven sessions, 830 nm, 50 mW, CW, Ø 0.0028 cm2). The mandibular left incisor was surgically extracted in all animals, and one osseointegrated implant was placed immediately afterward (3.25ø × 11.5 mm; NanoTite, BIOMET 3i). Resonance frequency analysis was performed with the Osstell® device at implant placement and at 30 days (immediately before euthanasia). Micro-computed tomography analyses were then conducted using a high-resolution scanner (SkyScan 1172 X-ray Micro-CT) to evaluate the amount of newly formed bone around the implants. Irradiated animals showed significantly higher implant stability quotients at 30 days (64.286 ± 1.596; 95 % confidence interval (CI) 60.808–67.764) than controls (56.357 ± 1.596; 95 %CI 52.879–59.835) (P = .000). The percentage of newly formed bone around the implants was also significantly higher in irradiated animals (75.523 ± 8.510; 95 %CI 61.893–89.155) than in controls (55.012 ± 19.840; 95 %CI 41.380–68.643) (P = .027). Laser therapy, based on the irradiation protocol used in this study, was able to provide greater implant stability and increase the volume of peri-implant newly formed bone, indicating that laser irradiation effected an improvement in the osseointegration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muller F (2014) Interventions for edentate elders—what is the evidence? Gerodontology 31(Suppl 1):44–51. doi:10.1111/ger.12083

    Article  PubMed  Google Scholar 

  2. Chen ST, Buser D (2014) Esthetic outcomes following immediate and early implant placement in the anterior maxilla—a systematic review. Int J Oral Maxillofac Implants 29 Suppl:186–215. doi:10.11607/jomi.2014suppl.g3.3

    Article  PubMed  Google Scholar 

  3. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T, Branemark PI (1986) Osseointegration of titanium implants. Acta Orthop Scand 57:285–289

    Article  CAS  PubMed  Google Scholar 

  4. Coelho RC, Zerbinati LP, de Oliveira MG, Weber JB (2014) Systemic effects of LLLT on bone repair around PLLA-PGA screws in the rabbit tibia. Lasers Med Sci 29:703–708. doi:10.1007/s10103-013-1384-4

    Article  PubMed  Google Scholar 

  5. de Vasconcellos LM, Barbara MA, Deco CP, Junqueira JC, do Prado RF, Anbinder AL, de Vasconcellos LG, Cairo CA, Carvalho YR (2014) Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci 29:575–580. doi:10.1007/s10103-013-1326-1

    Article  PubMed  Google Scholar 

  6. Demirkol N, Sari F, Bulbul M, Demirkol M, Simsek I, Usumez A (2015) Effectiveness of occlusal splints and low-level laser therapy on myofascial pain. Lasers Med Sci 30:1007–1012. doi:10.1007/s10103-014-1522-7

    Article  PubMed  Google Scholar 

  7. Fronza B, Somacal T, Mayer L, de Moraes JF, de Oliveira MG, Weber JB (2013) Assessment of the systemic effects of low-level laser therapy (LLLT) on thyroid hormone function in a rabbit model. Int J Oral Maxillofac Surg 42:26–30. doi:10.1016/j.ijom.2012.06.017

    Article  CAS  PubMed  Google Scholar 

  8. Gasperini G, Rodrigues de Siqueira IC, Rezende Costa L (2014) Does low-level laser therapy decrease swelling and pain resulting from orthognathic surgery? Int J Oral Maxillofac Surg 43:868–873. doi:10.1016/j.ijom.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  9. Park JB, Ahn SJ, Kang YG, Kim EC, Heo JS, Kang KL (2015) Effects of increased low-level diode laser irradiation time on extraction socket healing in rats. Lasers Med Sci 30:719–726. doi:10.1007/s10103-013-1402-6

    Article  PubMed  Google Scholar 

  10. Tang E, Arany P (2013) Photobiomodulation and implants: implications for dentistry. J Periodontal Implant Sci 43:262–268. doi:10.5051/jpis.2013.43.6.262

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mayer L, Gomes FV, Carlsson L, Gerhardt-Oliveira M (2015) Histologic and resonance frequency analysis of peri-implant bone healing after low-level laser therapy: an in vivo study. Int J Oral Maxillofac Implants 30:1028–1035. doi:10.11607/jomi.3382

    Article  PubMed  Google Scholar 

  12. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332. doi:10.1111/j.1600-0501.2004.00994.x

    Article  PubMed  Google Scholar 

  13. Maluf AP, Maluf RP, Brito Cda R, Franca FM, De Brito RB Jr (2010) Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med Sci 25:693–698. doi:10.1007/s10103-010-0778-9

    Article  PubMed  Google Scholar 

  14. Primo BT, da Silva RC, Grossmann E, Miguens SA Jr, Hernandez PA, Silva AN Jr (2013) Effect of surface roughness and low-level laser therapy on removal torque of implants placed in rat femurs. J Oral Implantol 39:533–538. doi:10.1563/AAID-JOI-D-10-00141

    Article  PubMed  Google Scholar 

  15. Campanha BP, Gallina C, Geremia T, Loro RC, Valiati R, Hubler R, de Oliveira MG (2010) Low-level laser therapy for implants without initial stability. Photomed Laser Surg 28:365–369. doi:10.1089/pho.2008.2429

    Article  PubMed  Google Scholar 

  16. Rea M, Lang NP, Ricci S, Mintrone F, Gonzalez Gonzalez G, Botticelli D (2015) Healing of implants installed in over- or under-prepared sites—an experimental study in dogs. Clin Oral Implants Res 26:442–446. doi:10.1111/clr.12390

    Article  PubMed  Google Scholar 

  17. Friedmann A, Friedmann A, Grize L, Obrecht M, Dard M (2014) Convergent methods assessing bone growth in an experimental model at dental implants in the minipig. Ann Anat 196:100–107. doi:10.1016/j.aanat.2014.02.001

    Article  PubMed  Google Scholar 

  18. Lee SW, Hahn BD, Kang TY, Lee MJ, Choi JY, Kim MK, Kim SG (2014) Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. J Oral Maxillofac Surg 72:53–60. doi:10.1016/j.joms.2013.08.031

    Article  PubMed  Google Scholar 

  19. Ostman PO, Hellman M, Wendelhag I, Sennerby L (2006) Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont 19:77–83, discussion 84

    PubMed  Google Scholar 

  20. Pagliani L, Sennerby L, Petersson A, Verrocchi D, Volpe S, Andersson P (2013) The relationship between resonance frequency analysis (RFA) and lateral displacement of dental implants: an in vitro study. J Oral Rehabil 40:221–227. doi:10.1111/joor.12024

    Article  CAS  PubMed  Google Scholar 

  21. Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D (2015) Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res 26:e1–7. doi:10.1111/clr.12315

    Article  PubMed  Google Scholar 

  22. Anil S, Cuijpers VM, Preethanath RS, Aldosari AA, Jansen JA (2013) Osseointegration of oral implants after delayed placement in rabbits: a microcomputed tomography and histomorphometric study. Int J Oral Maxillofac Implants 28:1506–1511. doi:10.11607/jomi.3133

    Article  PubMed  Google Scholar 

  23. Finelle G, Papadimitriou DE, Souza AB, Katebi N, Gallucci GO, Araujo MG (2015) Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: micro-CT analysis. Clin Oral Implants Res 26:e42–46. doi:10.1111/clr.12328

    Article  PubMed  Google Scholar 

  24. Gomes FV, Mayer L, Massotti FP, Baraldi CE, Ponzoni D, Webber JB, de Oliveira MG (2015) Low-level laser therapy improves peri-implant bone formation: resonance frequency, electron microscopy, and stereology findings in a rabbit model. Int J Oral Maxillofac Surg 44:245–251. doi:10.1016/j.ijom.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  25. Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, Kamata N (2010) Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J Oral Rehabil 37:131–137. doi:10.1111/j.1365-2842.2009.02032.x

    Article  CAS  PubMed  Google Scholar 

  26. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (2014) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 29:559–564. doi:10.1007/s10103-012-1258-1

    Article  PubMed  Google Scholar 

  27. Massotti FP, Gomes FV, Mayer L, de Oliveira MG, Baraldi CE, Ponzoni D, Puricelli E (2015) Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed Laser Surg 33:123–128. doi:10.1089/pho.2014.3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mangione F, Meleo D, Talocco M, Pecci R, Pacifici L, Bedini R (2013) Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography. Ann Ist Super Sanita 49:261–265. doi:10.4415/ANN_13_03_05

    PubMed  Google Scholar 

  29. Pyo SW, Kim YM, Kim CS, Lee IS, Park JU (2014) Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae. Int J Oral Maxillofac Implants 29:478–484. doi:10.11607/jomi.3423

    Article  PubMed  Google Scholar 

  30. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  31. Le BT, Borzabadi-Farahani A (2014) Simultaneous implant placement and bone grafting with particulate mineralized allograft in sites with buccal wall defects, a three-year follow-up and review of literature. J Craniomaxillofac Surg 42:552–559. doi:10.1016/j.jcms.2013.07.026

    Article  PubMed  Google Scholar 

  32. Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  33. Khadra M (2005) The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl 172:1–63

    Google Scholar 

  34. Kim YD, Kim SS, Hwang DS, Kim SG, Kwon YH, Shin SH, Kim UK, Kim JR, Chung IK (2007) Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers Surg Med 39:441–450

    Article  PubMed  Google Scholar 

  35. Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25:96–101

    Article  CAS  PubMed  Google Scholar 

  36. Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, Pontes AE (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28:349–352. doi:10.1007/s10103-012-1167-3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Mayer.

Ethics declarations

Financial disclosure

The authors have no financial relationships relevant to this article to disclose.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, L., Gomes, F.V., de Oliveira, M.G. et al. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model. Lasers Med Sci 31, 1789–1795 (2016). https://doi.org/10.1007/s10103-016-2051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2051-3

Keywords

Navigation