Skip to main content
Log in

Low-light-level therapy as a treatment for minimal hepatic encephalopathy: behavioural and brain assessment

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Minimal hepatic encephalopathy (MHE) has been shown to affect daily functioning, quality of life, driving and overall mortality. However, little is known about treating or diagnosing early impairments involved in MHE. We studied one of its precipitating factors, portal hypertension. The purpose was to evaluate an enhancement in neuronal metabolism through low-light-level therapy (LLLT) and whether this therapy has effects on behavioural task acquisition. Rats were trained to perform a stimulus-response task using the Morris water maze. Three groups of animals were used: a SHAM (sham-operated) group (n = 7), a portal hypertension (PH) group (n = 7) and a PH + LLLT group (n = 7). The triple portal vein ligation method was used to create an animal model of the early developmental phase of HE, and then the animals were exposed to 670 + 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days. The metabolic activity of the brains was studied with cytochrome c oxidase histochemistry. There were differences in behavioural performance, with an improvement in the PH + LLLT group. Energetic brain metabolism revealed significant differences between the groups in all the brain structures analysed, except the anterodorsal thalamus. At the same time, in different brain networks, the PH group showed a more complicated relationship among the structures, while the SHAM and PH + LLLT groups had similar patterns. In this study, we provide the first preliminary insights into the validity of LLLT as a possible intervention to improve memory under minimal hepatic encephalopathy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arias N, Méndez M, Fidalgo C, Aller MA, Arias J, Arias JL (2013) Mapping metabolic brain activity in three models of hepatic encephalopathy. Int J Hypertens 2013(390872):1–7. doi:10.1155/2013/390872

    Article  Google Scholar 

  2. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858

    Article  CAS  PubMed  Google Scholar 

  3. Zhan T, Stremmel W (2012) The diagnosis and treatment of minimal hepatic encephalopathy. Dtsch Arztebl Int 109:180–187

    PubMed  PubMed Central  Google Scholar 

  4. Byrnes KR, Wu C, Waynat RW, Ilev IK, Anders JJ (2005) Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171

    Article  PubMed  Google Scholar 

  5. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S, Sharma SK, Whalen MJ, Hamblin MR (2011) Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 6, e26212

    Google Scholar 

  6. Oron A, Oron U, Streeter JM, de Taboada L, Alexandrovich A, Trembovler V, Shohami E (2007) Low-level laser therapy applied transcanially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24:651–656

    Article  PubMed  Google Scholar 

  7. Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzhei Dis 32:741–752

    Google Scholar 

  8. Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J et al (2009) Members of the ISHEN Commission on Experimental Models of HE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29:783–788

    Article  PubMed  Google Scholar 

  9. Méndez M, Méndez-López M, López L, Aller MA, Arias J et al (2009) Associative learning deficit in two experimental models of hepatic encephalopathy. Behav Brain Res 198:346–351

    Article  PubMed  Google Scholar 

  10. Erceg S, Monfort P, Hernández-Viadel M, Rodrigo R, Montoliu C et al (2005) Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 41:299–306

    Article  CAS  PubMed  Google Scholar 

  11. Arias N, Méndez M, Arias JL (2015) Differential contribution of the hippocampus in two different demanding tasks at early stages of hepatic encephalopathy. Neuroscience 284:1–10

  12. Conejo NM, Gonzalez-Pardo H, Gonzalez-Lima F, Arias JL (2010) Spatial learning of the water maze: progression of brain circuits mapped with cytochrome oxidase histochemistry. Neurobiol Learn Mem 93:362–371

    Article  CAS  PubMed  Google Scholar 

  13. Aller MA, Vara E, García C, Nava MP, Angulo A et al (2006) Hepatic lipid metabolism changes in short- and long-term prehepatic portal hypertensive rats. World J Gastroenterol 12:6828–6834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teather LA, Packard MG, Smith DE, Ellis-Behnke RG, Bazan NG (2005) Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiol Learn Mem 84:75–84

    Article  CAS  PubMed  Google Scholar 

  15. Arias N, Álvarez C, Conejo N, González-Pardo H, Arias JL (2010) Estrous cycle and sex as regulating factors of baseline brain oxidative metabolism and behavior. Revista Iberoamericana de Psicología y Salud 1:3–16

    Google Scholar 

  16. Paxinos G, Watson CH (2005) The rat brain in stereotaxic coordinates—the new coronal set, 5th edn. Elsevier Academic Press, London

    Google Scholar 

  17. Shao J, Dongsheng T (2005) Jacknife and bootstrap. Springer, New York

    Google Scholar 

  18. Dhiman RK, Saraswat VA, Sharma BK, Sarin SK, Chawla YK et al (2010) Indian National Association for Study of the Liver. Minimal hepatic encephalopathy: consensus statement of a working party of the Indian National Association for Study of the Liver. J Gastroenterol Hepatol 25:1029–1041

    Article  PubMed  Google Scholar 

  19. Tranah TH, Manakkat Vijay GK, Ryan JM, Shawcross DL (2013) Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 28:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Kappus MR, Bajaj JS (2012) Covert hepatic encephalopathy: not as minimal as you might think. Clin Gastroenterol Hepatol 10:1208–1219

    Article  PubMed  Google Scholar 

  21. Arias N, Méndez M, Gómez-Lázaro E, Azpiroz A, Arias JL (2015) Main target of minimal hepatic encephalopathy: morphophysiological, inflammatory and metabolic view. Physiol Behav 149:247–254

    Article  CAS  PubMed  Google Scholar 

  22. Packard MG, Vecchioli SF, Schroeder JP, Gasbarri A (2001) Task-dependent role for dorsal striatum metabotropic glutamate receptors in memory. Learn Mem 8:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61:260–270

    Article  CAS  PubMed  Google Scholar 

  24. Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ (2012) Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 29:408–417

    Article  PubMed  PubMed Central  Google Scholar 

  25. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA (2010) Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg 29:351–358

    Article  PubMed  Google Scholar 

  26. Arias N, Méndez M, Arias J, Arias JL (2012) Brain metabolism and spatial memory are affected by portal hypertension. Metab Brain Dis 27:183–191

    Article  CAS  PubMed  Google Scholar 

  27. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533

    Article  PubMed  Google Scholar 

  28. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361

    Article  CAS  PubMed  Google Scholar 

  29. Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175

    PubMed  PubMed Central  Google Scholar 

  30. Vladimirov YA, Klebanov GI, Borisenko GG, Osipov AN (2004) Molecular and cellular mechanisms of the low intensity laser radiation effect. Biofizika 49:339–350

    CAS  PubMed  Google Scholar 

  31. Osipov AN, Borisenko GG, Vladimirov YA (2007) Biological activity of hemoprotein nitrosyl complexes. Biochemistry 72:1491–1504

    CAS  PubMed  Google Scholar 

  32. Dungel P, Mittermayr R, Haindl S, Osipov AN, Wagner C, Redl H, Kozlov AV (2008) Illumination with blue light reactivates respiratory activity of mitochondria inhibited by nitric oxide, but not by glycerol trinitrate. Arch Biochem Biophys 471:109–115

    Article  CAS  PubMed  Google Scholar 

  33. Conejo NM, González-Pardo H, Vallejo G, Arias JL (2007) Changes in brain oxidative metabolism induced by water maze training. Neuroscience 145:403–412

    Article  CAS  PubMed  Google Scholar 

  34. Méndez-López M, Méndez M, Sampedro-Piquero P, Arias JL (2013) Spatial learning-related changes in metabolic activity of limbic structures at different posttask delays. J Neurosci Res 91:151–159

    PubMed  Google Scholar 

  35. Arias N, Méndez M, Arias JL (2015) The importance of the context in the hippocampus and brain related areas throughout the performance of a fear conditioning task. Hippocampus 25:1242–1249

    Article  CAS  PubMed  Google Scholar 

  36. Kolyva C, Ghosh A, Tachtsidis I, Highton D, Cooper CE, Smith M, Elwell CE (2014) Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. Neuroimage 85:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    Article  CAS  PubMed  Google Scholar 

  38. McDonald RJ, Hong NS (2004) A dissociation of dorso-lateral striatum and amygdala function on the same stimulus–response habit task. Neuroscience 124:507–513

    Article  CAS  PubMed  Google Scholar 

  39. McDonald RJ, White NM (2013) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 127:835–853

    Article  PubMed  Google Scholar 

  40. Lingawi NW, Balleine BW (2012) Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J Neurosci 32:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Todd TP, Bucci DJ (2015) Retrosplenial cortex and long-term memory: molecules to behavior. Neural Plast 2015:414173. doi:10.1155/2015/414173

    PubMed  PubMed Central  Google Scholar 

  42. Farovik A, Dupont LM, Arce M, Eichenbaum H (2008) Medial prefrontal cortex supports recollection, but not familiarity, in the rat. J Neurosci 28:13428–13434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5:35–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by MEC Grants AP2009-1714 and the Alfonso Martín Escudero Foundation to NA and Project Grants of the Spanish Ministry of Economy and Competitiveness: PSI 2010-19348 and PSI 2013-45924. Thanks to Claudia Nuñez for her technical assistance and to Cynthia DePoy for the English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, N., Méndez, M. & Arias, J.L. Low-light-level therapy as a treatment for minimal hepatic encephalopathy: behavioural and brain assessment. Lasers Med Sci 31, 1717–1726 (2016). https://doi.org/10.1007/s10103-016-2042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2042-4

Keywords

Navigation