Picosecond lasers for tattoo removal: a systematic review

An Erratum to this article was published on 14 December 2016


Given that the pigment particles in tattoos have a relaxation time of <10 ns, picosecond lasers would be expected to be more effective than nanosecond lasers in tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90–100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69–100 % of tattoos showed over 70 % clearance of pigment after 1–10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Grumet GW (1983) Psychodynamic implications of tattoos. Am J Orthopsychiatry 53:482–492

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Laumann AE, Derick AJ (2006) Tattoos and body piercings in the United States: a national data set. J Am Acad Dermatol 55:413–421. doi:10.1016/j.jaad.2006.03.026

    Article  PubMed  Google Scholar 

  3. 3.

    Armstrong ML, Roberts AE, Owen DC, Koch JR (2004) Contemporary college students and body piercing. J Adolesc Health 35:58–61. doi:10.1016/j.jadohealth.2003.08.012

    Article  PubMed  Google Scholar 

  4. 4.

    Varma S, Lanigan SW (1999) Reasons for requesting laser removal of unwanted tattoos. Br J Dermatol 140:483–485. doi:10.1046/j.1365-2133.1999.02714.x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Scutt RW (1972) The chemical removal of tattoos. Br J Plast Surg 25:189–194. doi:10.1016/S0007-1226(72)80043-2

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Goldman L, Wilson RG, Hornby P, Meyer RG (1965) Radiation from a Q-switched ruby laser. Effect of repeated impacts of power output of 10 megawatts on a tattoo of man. J Invest Dermatol 44:69–71

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Goldman L, Rockwell RJ, Meyer R, Otten R, Wilson RG, Kitzmiller KW (1967) Laser treatment of tattoos. A preliminary survey of three years’ clinical experience. JAMA 201:841–844. doi:10.1001/jama.1967.03130110067016

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527. doi:10.1126/science.6836297

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ho DD-M, London R, Zimmerman GB, Young DA (2002) Laser-tattoo removal—a study of the mechanism and the optimal treatment strategy via computer simulations. Lasers Surg Med 30:389–397. doi:10.1002/lsm.10065

    Article  PubMed  Google Scholar 

  10. 10.

    Høgsberg T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. Br J Dermatol 165:1210–1218. doi:10.1111/j.1365-2133.2011.10561.x

    Article  PubMed  Google Scholar 

  11. 11.

    PRISMA 2009 Flow Diagram. From Moher D, Liberati A, Tetzlaff J, Altman DG. The PRSIMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-analyses: The PRISMA STATEMENT, PLoS Med 6(6): e10000097. (2009)

  12. 12.

    Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52:377–384. doi:10.1136/jech.52.6.377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Herd RM, Alora MB, Smoller B, Arndt KA, Dover JS (1999) A clinical and histologic prospective controlled comparative study of the picosecond titanium:sapphire (795 nm) laser versus the Q-switched alexandrite (752 nm) laser for removing tattoo pigment. J Am Acad Dermatol 40:603–606. doi:10.1016/S0190-9622(99)70444-5

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Izikson L, Farinelli W, Sakamoto F, Tannous Z, Anderson RR (2010) Safety and effectiveness of black tattoo clearance in a pig model after a single treatment with a novel 758nm 500 picosecond laser: a pilot study. Lasers Surg Med 42:640–646. doi:10.1002/lsm.20942

    Article  PubMed  Google Scholar 

  15. 15.

    Ross V, Naseef G, Lin G, Kelly M, Michaud N, Flotte TJ, Raythen J, Anderson RR (1998) Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers. Arch Dermatol 134:167–171. doi:10.1001/archderm.134.2.167

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Saedi N (2012) Treatment of tattoos with a picosecond alexandrite laser: a prospective trial. Arch Dermatol 148:1360–1363. doi:10.1001/archdermatol.2012.2894

    Article  PubMed  Google Scholar 

  17. 17.

    Bernstein EF, Schomacker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD (2015) A novel dual-wavelength, Nd:YAG, picosecond-domain laser safely and effectively removes multicolor tattoos. Lasers Surg Med. doi:10.1002/lsm.22391

    PubMed Central  Google Scholar 

  18. 18.

    Brauer JA, Reddy KK, Anolik R, Weiss ET, Karen JK, Hale EK, Brightman LA, Bernstein L, Geronemus RG (2012) Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch Dermatol 148:820–823. doi:10.1001/archdermatol.2012.901

    Article  PubMed  Google Scholar 

  19. 19.

    Alabdulrazzaq H, Brauer JA, Bae Y-S, Geronemus RG (2015) Clearance of yellow tattoo ink with a novel 532-nm picosecond laser. Lasers Surg Med 47:285–288. doi:10.1002/lsm.22354

    Article  PubMed  Google Scholar 

  20. 20.

    Au S, Liolios AM, Goldman MP (2015) Analysis of incidence of bulla formation after tattoo treatment using the combination of the picosecond alexandrite laser and fractionated CO2 ablation. Dermatol Surg 41:242–245. doi:10.1097/DSS.0000000000000244

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fox MA, McNichols RJ, Gowda A, Motamedi M (2004) The use of the hairless guinea pig in tattoo research. Contemp Top Lab Anim Sci 43:35–38

    CAS  PubMed  Google Scholar 

  22. 22.

    Kilmer SL, Lee MS, Grevelink JM, Flotte TJ, Anderson RR (1993) The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose–response study. Arch Dermatol 129:971–978. doi:10.1001/archderm.1993.01680290043007

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ferguson JE, August PJ (1996) Evaluation of the Nd/YAG laser for treatment of amateur and professional tattoos. Br J Dermatol 135:586–591

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Mankowska A, Kasprzak W, Adamski Z (2015) Long-term evaluation of ink clearance in tattoos with different color intensity using the 1064-nm Q-switched Nd :YAG laser. J Cosmet Dermatol. doi:10.1111/jocd.12162

    PubMed  Google Scholar 

  25. 25.

    Leuenberger ML, Mulas MW, Hata TR, Goldman MP, Fitzpatrick RE, Grevelink JM (1999) Comparison of the Q-switched alexandrite, ND:YAG, and ruby lasers in treating blue-black tattoos. Dermatol Surg 25:10–14. doi:10.1046/j.1524-4725.1999.08122.x

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Sardana K, Ranjan R, Ghunawat S (2015) Optimising laser tattoo removal. J Cutan Aesthet Surg 8:16–24. doi:10.4103/0974-2077.155068

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kent KM, Graber EM (2012) Laser tattoo removal: a review. Dermatol Surg 38:1–13. doi:10.1111/j.1524-4725.2011.02187.x

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mao JC, DeJoseph LM (2012) Latest innovations for tattoo and permanent makeup removal. Facial Plast Surg Clin North Am 20:125–134. doi:10.1016/j.fsc.2012.02.009

    Article  PubMed  Google Scholar 

Download references


The review protocol was registered on the PROSPERO international prospective register of systematic reviews (CRD42015023458).

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Institutional review board approval was not required.

Author information



Corresponding author

Correspondence to Ofer Reiter.

Additional information

Moshe Lapidoth contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s10103-016-2130-5.

Appendix PubMed search strategy

Appendix PubMed search strategy

Search phrase:

((“Lasers”[Mesh] OR lasers OR laser OR picosecond)) AND (tattoo OR tattoos)

Retrieved in July 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reiter, O., Atzmony, L., Akerman, L. et al. Picosecond lasers for tattoo removal: a systematic review. Lasers Med Sci 31, 1397–1405 (2016). https://doi.org/10.1007/s10103-016-2001-0

Download citation


  • Laser
  • Laser treatment
  • Tattoo
  • Tattoo removal
  • Nd-YAG
  • 755 nm
  • 758 nm
  • 795 nm
  • 1064 nm
  • 532 nm