Skip to main content
Log in

The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm2). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dougall A, Fiske J (2008) Access to special care dentistry, part 9. Special care dentistry services for older people. Br Dent J 205(8):421–434

    Article  CAS  PubMed  Google Scholar 

  2. Ozsoy U, Hizay A, Demirel BM, Ozsoy O, Bilmen Sarikcioglu S, Turhan M, Sarikcioglu L (2011) The hypoglossal-facial nerve repair as a method to improve recovery of motor function after facial nerve injury. Ann Anat 193(4):304–313

    Article  PubMed  Google Scholar 

  3. Tong Y, Chen J, Ji Q (2010) A unified probabilistic framework for spontaneous facial action modeling and understanding. IEEE Trans Pattern Anal Mach Intell 32(2):258–273

    Article  PubMed  Google Scholar 

  4. Fattah A, Borschel GH, Zuker RM (2011) Reconstruction of facial nerve injuries in children. J Craniofac Surg 22(3):782–788

    Article  PubMed  Google Scholar 

  5. Hundeshagen G, Szameit K, Thieme H, Finkensieper M, Angelov DN, Guntinas-Lichius O, Irintchev A (2013) Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus. Neuroscience 248:307–318

    Article  CAS  PubMed  Google Scholar 

  6. Thorén H, Snäll J, Salo J, Suominen-Taipale L, Kormi E, Lindqvist C, Törnwall J (2010) Occurrence and types of associated injuries in patients with fractures of the facial bones. J Oral Maxillofac Surg 68(4):805–810

    Article  PubMed  Google Scholar 

  7. Seddon HJ (1943) Three types of nerve injury. Brain 66:237–288

    Article  Google Scholar 

  8. Friedman AH, Elias WJ, Midha R (2009) Introduction: peripheral nerve surgery--biology, entrapment, and injuries. Neurosurg Focus 26(2), E1

    Article  PubMed  Google Scholar 

  9. Félix SP, Pereira Lopes FR, Marques SA, Martinez AM (2013) Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33(6):468–477

    Article  PubMed  Google Scholar 

  10. Sinis N, Geuna S, Viterbo F (2014) Translational research in peripheral nerve repair and regeneration. Biomed Res Int 2014:381426

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johnson EO, Soucacos PN (2008) Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury 39(Suppl 3):S30–S36

    Article  PubMed  Google Scholar 

  12. Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223(1):77–85

    Article  PubMed  Google Scholar 

  13. Attar BM, Zalzali H, Razavi M, Ghoreishian M, Rezaei M (2012) Effectiveness of fibrin adhesive in facial nerve anastomosis in dogs compared with standard microsuturing technique. J Oral Maxillofac Surg 70(10):2427–2432

    Article  PubMed  Google Scholar 

  14. Tetik C, Ozer K, Ayhan S, Siemionow K, Browne E, Siemionow M (2002) Conventional versus epineural sleeve neurorrhaphy technique: functional and histomorphometric analysis. Ann Plast Surg 49(4):397–403

    Article  PubMed  Google Scholar 

  15. Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014:698256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barros LC, Ferreira RS Jr, Barraviera SR, Stolf HO, Thomazini-Santos IA, Mendes-Giannini MJ, Toscano E, Barraviera B (2009) A new fibrin sealant from Crotalus durissus terrificus venom: applications in medicine. J Toxicol Environ Health B Crit Rev 12(8):553–571

    Article  CAS  PubMed  Google Scholar 

  17. Sandrini FA, Pereira-Júnior ED, Gay-Escoda C (2007) Rabbit facial nerve anastomosis with fibrin glue: nerve conduction velocity evaluation. Braz J Otorhinolaryngol 73(2):196–201

    Article  PubMed  Google Scholar 

  18. Martins RS, Siqueira MG, Silva CF, Godoy BO, Pereira JP (2005) Electrophysiological evaluation of sciatic nerve regeneration rat, with use of suture, fibrin glue or combination of both techniques. Arq Neuropsiquiatr 63(3A):601–604

    Article  PubMed  Google Scholar 

  19. Rochkind S, Leider-Trejo L, Nissan M, Shamir MH, Kharenko O, Alon M (2007) Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 25(3):137–143

    Article  PubMed  Google Scholar 

  20. Rochkind S, Geuna S, Shainberg A (2009) Chapter 25: phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol 87:445–464

    Article  PubMed  Google Scholar 

  21. Walsh S, Midha R (2009) Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 26(2), E2

    Article  PubMed  Google Scholar 

  22. Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29(1):351–357

    Article  PubMed  Google Scholar 

  23. Thomazini-Santos IA, Barraviera SRCS, Mendes-Giannini MJS, Barraviera B B, Surgical adhesives (2001) J Venom Anim Toxins 7(2):159–171

    Article  Google Scholar 

  24. Barros LC, Soares AM, Costa FL, Rodrigues VM, Fuly AL, Giglio JR, Gallacci M, Thomazini-Santos IA, Barraviera SRCS, Barraviera B, Ferreira Junior RS (2011) Biochemical and biological evaluation of gyroxin isolated from Crotalus durissus terrificus venom. J Venom Anim Toxins incl Trop Dis 17(1):23–33

    Article  CAS  Google Scholar 

  25. Gasparotto VP, Landim-Alvarenga FC, Oliveira AL, Simões GF, Lima-Neto JF, Barraviera B, Ferreira RS (2014) A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res Ther 5(3):78

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seabra Ferreira R Jr (2014) Autologous or heterologous fibrin sealant scaffold: which is the better choice? J Venom Anim Toxins Incl Trop Dis 20:31

    Article  Google Scholar 

  27. Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML, Liang JI, Chen CH (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS ONE 9(8), e103348

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anders JJ, Moges H, Wu X, Erbele ID, Alberico SL, Saidu EK, Smith JT, Pryor BA (2014) In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg Med 46(1):34–45

    Article  PubMed  Google Scholar 

  29. Buchaim RL, Andreo JC, Barraviera B, Ferreira Junior RS, Buchaim DV, Rosa Junior GM, de Oliveira AL, de Castro RA (2015) Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom. Injury 46(4):655–660

    Article  PubMed  Google Scholar 

  30. Ganga MV, Coutinho-Netto J, Colli BO, Marques Junior W, Catalão CH, Santana RT, Oltramari MR, Carraro KT, Lachat JJ, Lopes Lda S (2012) Sciatic nerve regeneration in rats by a nerve conduit engineering with a membrane derived from natural latex. Acta Cir Bras 27(12):885–891

    Article  PubMed  Google Scholar 

  31. Brenner MJ, Moradzadeh A, Myckatyn TM, Tung TH, Mendez AB, Hunter DA, Mackinnon SE (2008) Role of timing in assessment of nerve regeneration. Microsurgery 28(4):265–272

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suri A, Mehta VS, Sarkar C (2002) Microneural anastomosis with fibrin glue: an experimental study. Neurol India 50(1):23–26

    CAS  PubMed  Google Scholar 

  33. Whitlock EL, Kasukurthi R, Yan Y, Tung TH, Hunter DA, Mackinnon SE (2010) Fibrin glue mitigates the learning curve of microneurosurgical repair. Microsurgery 30(3):218–222

    PubMed  Google Scholar 

  34. Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg 127(6):2381–2390

    Article  CAS  PubMed  Google Scholar 

  35. Barbizan R, Castro MV, Rodrigues AC, Barraviera B, Ferreira RS, Oliveira AL (2013) Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom. PLoS ONE 8(5), e63260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Zhang Y, Han W, Hu F, Qian Y, Chen Q (2013) TRO19622 promotes myelin repair in a rat model of demyelination. Int J Neurosci 123(11):810–822

    Article  CAS  PubMed  Google Scholar 

  37. Moimas S, Novati F, Ronchi G, Zacchigna S, Fregnan F, Zentilin L, Papa G, Giacca M, Geuna S, Perroteau I, Arnež ZM, Raimondo S (2013) Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 20(10):1014–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Machado EG, Issa JP, Figueiredo FA, Santos GR, Galdeano EA, Alves MC, Chacon EL, Ferreira Junior RS, Barraviera B, Cunha MR (2015) A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects. Acta Histochem 117(3):288–296

    Article  CAS  PubMed  Google Scholar 

  39. Cartarozzi LP, Spejo AB, Ferreira RS Jr, Barraviera B, Duek E, Carvalho JL, Góes AM, Oliveira AL (2015) Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Res Bull 112:14–24

    Article  CAS  PubMed  Google Scholar 

  40. Xu K, Terakawa S (1999) Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons. J Exp Biol 202(Pt 15):1979–1989

    CAS  PubMed  Google Scholar 

  41. Waitayawinyu T, Parisi DM, Miller B, Luria S, Morton HJ, Chin SH, Trumble TE (2007) A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg [Am] 32(10):1521–1529

    Article  Google Scholar 

  42. Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE (2012) Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 520(18):4184–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin DH, Lee E, Hyun JK, Lee SJ, Chang YP et al (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344:71–74

    Article  CAS  PubMed  Google Scholar 

  44. Câmara CN, Brito MV, Silveira EL, Silva DS, Simões VR, Pontes RW (2011) Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats. Acta Cir Bras 26(1):12–18

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Vieira Buchaim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchaim, D.V., Rodrigues, A.d.C., Buchaim, R.L. et al. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve. Lasers Med Sci 31, 965–972 (2016). https://doi.org/10.1007/s10103-016-1939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1939-2

Keywords

Navigation