Skip to main content

Advertisement

Log in

Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Soft tissue seal plays a critical role in long-term success of dental implants, and the effects of implant surface treatments such as laser ablation have been a topic of particular interest in this respect. Considering the existing controversy regarding soft tissue behavior in contact with implant surfaces, this study sought to assess the morphology, proliferation, and gene expression of human gingival fibroblasts (HGFs) on different abutment surfaces. In this in vitro, experimental study, HGFs were cultured on 45 discs (Laser-Lok, titanium, and zirconia). Cell morphology, proliferation rate, and interleukin 10 (IL-10), tumor necrosis factor alpha (TNFα), fibronectin, and integrin gene expressions were assessed by electron microscopy, methyl thiazol tetrazolium (MTT) assay, and real-time polymerase chain reaction (PCR), respectively. Data were analyzed using ANOVA and the Kruskal–Wallis H test. Fibroblast attachment was noted in all the three groups. Spindle-shaped cells with pseudopod-like processes were more frequently seen in the Laser-Lok group. Cell proliferation was significantly higher in the Laser-Lok group compared to those in the other groups (P = 0.0002). Significant differences were found in the expression of IL-10, TNFα, fibronectin, and integrin genes among the groups (P < 0.01). Within the limitations of this study, HGFs on Laser-Lok surfaces had a more mature morphology and greater proliferation and differentiation as compared to those on zirconia and titanium surfaces. This indicates better attachment of these cells to laser-modified surfaces, creating a more efficient soft tissue seal around dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Groβner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M (2006) Focal adhesion contact formation by fibroblast cultured on surface-modified dental implants: an in vitro study. Clin Oral Implants Res 17(6):736–745

    Article  Google Scholar 

  2. Lee DW, Kim J-G, Kim MK, Ansari S, Moshavernia A et al (2015) Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts. J Adv Prosthodont 7(2):138–145

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nevins M, Kim DM, Jun SH, Schupbach P, Guze K, Schupbach P, Nevins ML (2010) Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study. Int J Periodontics Restorative Dent 30(3):245–255

    PubMed  Google Scholar 

  4. Baltriukiene D, Sabaliuskas V, Balciusas E, Melninkaitis A, Liufkelskene E, Bukelskiene V (2014) The effect of laser-treated titanium surface on human gingival fibroblast behavior. J Biomed Mater Res A 102(3):713–720

    Article  CAS  PubMed  Google Scholar 

  5. Nevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM (2008) Human histologic evidence of a connective tissue attachment to a dental implant. Int J Periodontics Restorative Dent 28:111–121

    PubMed  Google Scholar 

  6. Frankova J, Pivodova V, Ruzicka F, Tomankova K, Vrlkova J (2013) Comparing biocompatibility of gingival fibroblast and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 101(10):2915–2924

    Article  PubMed  Google Scholar 

  7. Kearns VR, Williams RL, Mirvakily F, Doberty PJ, Martin N (2013) Guided gingival fibroblast attachment to titanium surface: an in vitro study. J Clin Periodontol 40(1):99–108

    Article  CAS  PubMed  Google Scholar 

  8. Gómez-Florit M, Ramis JM, Xing R, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M (2014) Differential response of human gingival fibroblast to titanium- and titanium-zirconium-modified surfaces. J Periodontal Res 49(4):425–436

    Article  PubMed  Google Scholar 

  9. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL (2009) Clinical evaluation of lasermicrotexturing for soft tissue and bone attachment to dental implants. Implant Dent 18(1):57–66

  10. Nevins M, Nevins ML, Gobbato L, Lee HJ, Wang CW, Kim DM (2013) Maintaining inter-implant crestal bone height via a combined platform-switched, Laser-Lok® implant/abutment system: a proof-of-principle canine study. Int J Periodontics Restorative Dent 33(3):261–267

    Article  PubMed  Google Scholar 

  11. Geurs NC, Vassilopoulos PJ, Reddy MS (2011) Histologic evidence of connective tissue integration on laser microgrooved abutments in humans. Clin Adv Periodontics 1:29–33

    Article  Google Scholar 

  12. Miura S, Takebe J (2012) Biological behavior of fibroblast-like cells cultured on anodized-hydrothermally treated titanium with a nanotopographic surface structure. J Prosthodont Res 56(3):178–186

    Article  PubMed  Google Scholar 

  13. Kunzler TP, Drobek T, Schuler M, Spencer ND (2007) Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 28(13):2175–2182

    Article  CAS  PubMed  Google Scholar 

  14. Al Mustafa M, Agis H, Muller H, Watzck G, Gruber R (2015) In vitro adhesion of fibroblast cells to titanium allay discs treated with sodium hydroxide. Clin Oral Impl Res 26(1):15–19

    Article  Google Scholar 

  15. Thoma DS, Jones AA, Dard M, Grize L, Obrecht M, Cochran DL (2011) Tissue integration of a new titanium-zirconium dental implant: a comparative histologic and radiographic study in the canine. J Periodontol 82(10):1453–1461

    Article  CAS  PubMed  Google Scholar 

  16. Rutkunas V, Bukelskiene V, Sabaliauskas V, Balciunas E, Malinauskas M, Baltriukiene D (2015) Assessment of human gingival fibroblast interaction with dental implant abutment abutment materials. J Mater Sci Mater Med 26(4):169

    Article  PubMed  Google Scholar 

  17. Nothdurft FP, Fontana D, Ruppenthal S, May A, Aktas C, Mehraein Y (2014) Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies. Clin Imp Dent and Related Res 16:640–648

    Google Scholar 

  18. Fenner N, Hämmerle CH, Sailer I, Jung RE (2015) Long-term clinical, technical, and esthetic outcomes of all-ceramic vs. titanium abutments on implant supporting single-tooth reconstructions after at least 5 years. Clin Oral Implants Res. doi:10.1111/clr.12654

  19. Traini T, Pettinicchio M, Murmura G, Varvara G, Di Lullo N, Sinjari B, Caputi S (2011) Esthetic outcome of an immediately placed maxillary anterior single-tooth implant restored with a custom-made zirconia-ceramic abutment and crown: a staged treatment. Quintessence Int 42(2):103–108

    PubMed  Google Scholar 

  20. Ketabi M, Deporter D (2013) The effect of laser microgrooves on hard and soft tissue attachment to implant collar surfaces: a literature review and interpretation. Int J Periodontics & Restorative Dentistry 33:e145–e152

    Article  Google Scholar 

  21. Bonakdar S et al (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30(4):636–643

    Article  CAS  Google Scholar 

  22. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25(18):4087–4103

    Article  CAS  PubMed  Google Scholar 

  23. Berglundh T, Lindhe J, Ericsson I et al (1991) The soft tissue barrier at implants and teeth. Clin Oral Implants Res 2:81–90

    Article  CAS  PubMed  Google Scholar 

  24. Brunette DM (1998) The effect of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 3:231–246

    Google Scholar 

  25. Schartz-Filho HD, Morandini ACF, Ramos-Juniur ES, Santos CF, Marcantonio JRE, Wennerberg A (2012) Titanium with nanotopography modulate cytokine production in cultured human gingival fibroblast. J Biomed Mater Res A 100(10):2629–2636

    Article  Google Scholar 

  26. Grew JC, Ricci JL, Alexander H (2008) Connective-tissue responses to defined biomaterial surfaces. II. Behavior of rat and mouse fibroblasts cultured on microgrooved substrates. J Biomed Mater Res A 85(2):326–335

    Article  PubMed  Google Scholar 

  27. Ricci JL, Grew JC, Alexander H (2008) Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on microgrooved substrates. J Biomed Mater Res 85(2):313–325

    Article  Google Scholar 

  28. Trylovich DJ, Cobb CM, Pippin DJ, Spencer P, Killoy WJ (1992) The effect of the Nd:YAG laser on in vitro fibroblast attachment to endotoxin-treated root surfaces. J Periodontol 63:626–632

    Article  CAS  PubMed  Google Scholar 

  29. Canullo L, Penarrocha-Oltra D, Marchionni S, Bagan L, Penarrocha- Diago M, Micarelli C (2014) Soft tissue cell adhesion to titanium abutments after different cleaning procedures: preliminary results of a randomized clinical trial. Med Oral Patol Pral Cir Bucal 19(2):e177–e183

    Article  CAS  Google Scholar 

  30. Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL (2008) The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent 17(2):217–228

    Article  PubMed  Google Scholar 

  31. Meyer U, Joos U, Mythill J et al (2004) Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 25:1959–1967

    Article  CAS  PubMed  Google Scholar 

  32. Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58

    Article  PubMed  Google Scholar 

  33. Mackay IM, Arden KE, Nitsche A (2002) Survey and summary: real-time PCR in virology. Nucleic Acid Res 30(6):1292–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ouyong W, Rutz S, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  Google Scholar 

  35. Newman MG, Takei HH, Klokkevold PP, Carranza FA (2012) Carranza’s clinical periodontology. Elsevier Saunders, St. Louis

  36. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  37. Atsuta I, Ayukawa Y, Furuhashi A, Ogino Y, Moriyama Y, Tsukiyama Y (2014) In vivo and in vitro studies of epithelial cell behavior around titanium implants with machined and rough surfaces. Clin Imp Dent and Related Res 16:772–780

    Article  Google Scholar 

  38. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell. Garland science, New York

    Google Scholar 

  39. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D (1977) Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 68:186–198

    Article  Google Scholar 

  40. Bachle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Impl Res 15(6):683–692

    Article  Google Scholar 

  41. Gomes-Florit M, Xing R, Ramis JM, Taxt-Lamolle S, Haugen HJ, Lingstadaas SP, Monjo M (2014) Human gingival fibroblast function is stimulated on machined hydride titanium zirconium dental implants. J Dent 42(1):30–38

    Article  Google Scholar 

  42. Khosroshahi ME, Mohmoodi M, Saeedinasab H (2009) In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium:yttrium-aluminium-garnet laser and silicon carbide paper. Lasers Med Sci 24:925–939

    Article  CAS  PubMed  Google Scholar 

  43. Di Giulio M et al (2015) Porphyromonasì gingivalis biofilm formation in different titanium surfaces, an in vitro study. Clin Oral Implants Res. doi:10.1111/clr.12659

Download references

Acknowledgment

The authors would like to express their gratitude to the Zarin Iran Company and BioHorizons, USA, for providing us with the discs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloufar Daneshparvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahanizadeh, N., Motalebi, S., Daneshparvar, N. et al. Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces. Lasers Med Sci 31, 863–873 (2016). https://doi.org/10.1007/s10103-016-1927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1927-6

Keywords

Navigation