Skip to main content
Log in

Safety assessment of trans-tympanic photobiomodulation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We evaluated functional and morphological changes after trans-tympanic laser application using several different powers of photobiomodulation (PBM). The left (L) ears of 17 rats were irradiated for 30 min daily over 14 days using a power density of 909.1 (group A, 5040 J), 1136.4 (group B, 6300 J), and 1363.6 (group C, 7560 J) mW/cm2. The right (N) ears served as controls. The safety of PBM was determined by endoscopic findings, auditory brainstem response (ABR) thresholds, and histological images of hair cells using confocal microscopy, and light microscopic images of the external auditory canal (EAC) and tympanic membrane (TM). Endoscopic findings revealed severe inflammation in the TM of C group; no other group showed damage in the TM. No significant difference in ABR threshold was found in the PBM-treated groups (excluding the group with TM damage). Confocal microscopy showed no histological difference between the AL and AN, or BL and BN groups. However, light microscopy showed more prominent edema, inflammation, and vascular congestion in the TM of BL ears. This study found a dose-response relationship between laser power parameters and TM changes. These results will be useful for defining future allowance criteria for trans-tympanic laser therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Lee MY, Suh MW (2013) Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss. J Biomed Opt 18(12):128003

    Article  PubMed  Google Scholar 

  2. Aggarwal H, Singh MP, Nahar P, Mathur H, Gv S (2014) Efficacy of low-level laser therapy in treatment of recurrent aphthous ulcers—a sham controlled, split mouth follow up study. J Clin Diagn Res 8(2):218–221

    PubMed Central  PubMed  Google Scholar 

  3. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30(5):465–475

    Article  PubMed  Google Scholar 

  4. Chang WD, Wu JH, Wang HJ, Jiang JA (2014) Therapeutic outcomes of low-level laser therapy for closed bone fracture in the human wrist and hand. Photomed Laser Surg 32(4):212–218

    Article  PubMed  Google Scholar 

  5. Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediators Inflamm 2014:625048

    PubMed Central  PubMed  Google Scholar 

  6. Dancakova L, Vasilenko T, Kovac I, Jakubcova K, Holly M, Revajova V, Sabol F, Tomori Z, Iversen M, Gal P, Bjordal JM (2014) Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomed Laser Surg 32(4):198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dogan GE, Demir T, Orbak R (2014) Effect of low-level laser on guided tissue regeneration performed with equine bone and membrane in the treatment of intrabony defects: a clinical study. Photomed Laser Surg 32(4):226–231

    Article  PubMed  Google Scholar 

  8. Garcia VG, Sahyon AS, Longo M, Fernandes LA, Gualberto Junior EC, Novaes VC, Ervolino E, de Almeida JM, Theodoro LH (2014) Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg 42(7):1196–202

    Article  PubMed  Google Scholar 

  9. Gasperini G, Rodrigues de Siqueira IC, Rezende Costa L (2014) Does low-level laser therapy decrease swelling and pain resulting from orthognathic surgery? Int J Oral Maxillofac Surg 43(7):868–73

    Article  CAS  PubMed  Google Scholar 

  10. Gomes CA, Leal-Junior EC, Biasotto-Gonzalez DA, El-Hage Y, Politti F, Gonzalez Tde O, Dibai-Filho AV, de Oliveira AR, Frigero M, Antonialli FC, Vanin AA, de Tarso Camillo de Carvalho P (2014) Efficacy of pre-exercise low-level laser therapy on isokinetic muscle performance in individuals with type 2 diabetes mellitus: study protocol for a randomized controlled trial. Trials 15:116

    Article  PubMed Central  PubMed  Google Scholar 

  11. Madani AS, Ahrari F, Nasiri F, Abtahi M, Tuner J (2014) Low-level laser therapy for management of TMJ osteoarthritis. Cranio 32(1):38–44

    Article  PubMed  Google Scholar 

  12. Pansani TN, Basso FG, Turirioni AP, Kurachi C, Hebling J, de Souza Costa CA (2014) Effects of low-level laser therapy on the proliferation and apoptosis of gingival fibroblasts treated with zoledronic acid. Int J Oral Maxillofac Surg 43(8):1030–4

    Article  PubMed  Google Scholar 

  13. Shen CC, Yang YC, Huang TB, Chan SC, Liu BS (2013) Low-level laser-accelerated peripheral nerve regeneration within a reinforced nerve conduit across a large gap of the transected sciatic nerve in rats. Evid Based Complement Alternat Med 2013:175629

    PubMed Central  PubMed  Google Scholar 

  14. Bashiri H (2013) Evaluation of low level laser therapy in reducing diabetic polyneuropathy related pain and sensorimotor disorders. Acta Med Iran 51(8):543–547

    PubMed  Google Scholar 

  15. Sene GA, Sousa FF, Fazan VS, Barbieri CH (2013) Effects of laser therapy in peripheral nerve regeneration. Acta Ortop Bras 21(5):266–270

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kochetova OA, Mal’kova NY (2013) Opportunity to use the low-level laser therapy in the treatment of the occupational peripheral nervous system diseases (review of literature). Med Tr Prom Ekol 8:37–39

    PubMed  Google Scholar 

  17. Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988

    Article  PubMed  Google Scholar 

  18. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, Lampl Y, Streeter J, DeTaboada L, Chopp M (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37(10):2620–2624

    Article  PubMed  Google Scholar 

  19. Detaboada L, Ilic S, Leichliter-Martha S, Oron U, Oron A, Streeter J (2006) Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med 38(1):70–73

    Article  PubMed  Google Scholar 

  20. Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U (2006) Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed Laser Surg 24(4):458–466

    Article  PubMed  Google Scholar 

  21. Lapchak PA, Salgado KF, Chao CH, Zivin JA (2007) Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148(4):907–914

    Article  CAS  PubMed  Google Scholar 

  22. Lapchak PA, Han MK, Salgado KF, Streeter J, Zivin JA (2008) Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke 39(11):3073–3078

    Article  CAS  PubMed  Google Scholar 

  23. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J (2009) Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40(4):1359–1364

    Article  PubMed  Google Scholar 

  24. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA (2011) Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg 29(5):351–8

    Article  PubMed Central  PubMed  Google Scholar 

  25. McCarthy TJ, De Taboada L, Hildebrandt PK, Ziemer EL, Richieri SP, Streeter J (2010) Long-term safety of single and multiple infrared transcranial laser treatments in Sprague-Dawley rats. Photomed Laser Surg 28(5):663–667

    Article  PubMed  Google Scholar 

  26. Seada YI, Nofel R, Sayed HM (2013) Comparison between trans-cranial electromagnetic stimulation and low-level laser on modulation of trigeminal neuralgia. J Phys Ther Sci 25(8):911–914

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86(4):447–457

    Article  CAS  PubMed  Google Scholar 

  28. Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, Ando T, Xu T, Huang YY, Hamblin MR (2013) Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PLoS One 8(1):e53454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Konstantinovic LM, Jelic MB, Jeremic A, Stevanovic VB, Milanovic SD, Filipovic SR (2013) Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med 45(10):648–653

    Article  PubMed  Google Scholar 

  30. Barrett DW, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez-Lima F, Barrett DW (2014) Augmentation of cognitive brain functions with transcranial lasers. Front Syst Neurosci 8:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang Q, Ma H, Nioka S, Chance B (2000) Study of near infrared technology for intracranial hematoma detection. J Biomed Opt 5(2):206–213

    Article  CAS  PubMed  Google Scholar 

  33. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24(2):121–128

    Article  CAS  PubMed  Google Scholar 

  34. Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT (2003) Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A 100(6):3439–3444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chung YW, Ahn JC, Lim ES, Kim YS, Lee SH, Lee MY, Rhee CK (2007) A promotive effect of low-level laser on hair cell regeneration following gentamicin induced ototoxicity in postnatal organotypic culture of rat utricles. Korean J Otolaryngol-Head Neck Surg 50(1):25–30

    Google Scholar 

  36. Kim JB, Jung JY, Ahn JC, Rhee CK, Oh YH (2009) Preventive and therapeutic effects of low level laser irradiation on gentamicin-induced vestibulotoxicity in rat utricles. Korean J Otolaryngol-Head Neck Surg 52(1):19–28

    Article  Google Scholar 

  37. Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Suh MW (2012) Effect of low-level laser therapy on cochlear hair cell recovery after gentamicin-induced ototoxicity. Lasers Med Sci 27(5):987–992

    Article  PubMed  Google Scholar 

  38. Jung JY, Chung YW, Kim YS, Ahn JC, Suh MW, Chung PS, Rhee CK (2011) Effect of low-level laser and FM1-43 on prevention of ototoxicity in postnatal organotypic culture of rat utricles. Int Adv Otol 7(3):333–338

    Google Scholar 

  39. Rhee CK, Bahk CW, Kim SH, Ahn JC, Jung JY, Chung PS, Suh MW (2012) Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma. J Biomed Opt 17(6):068002

    Article  PubMed  Google Scholar 

  40. Park YM, Na WS, Park IY, Suh MW, Rhee CK, Chung PS, Jung JY (2013) Trans-canal laser irradiation reduces tinnitus perception of salicylate treated rat. Neurosci Lett 544:131–135

    Article  CAS  PubMed  Google Scholar 

  41. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787

    Article  PubMed  Google Scholar 

  42. Viberg A, Canlon B (2004) The guide to plotting a cochleogram. Hear Res 197(1–2):1–10

    Article  PubMed  Google Scholar 

  43. Stenfeldt K, Johansson C, Hellstrom S (2006) The collagen structure of the tympanic membrane: collagen types I, II, and III in the healthy tympanic membrane, during healing of a perforation, and during infection. Arch Otolaryngol Head Neck Surg 132(3):293–298

    Article  PubMed  Google Scholar 

  44. Cankaya H, Kosem M, Kiroglu F, Kiris M, Yuca K, Ozturk G, Dulger H, Erdogan E (2008) Effects of topical mitomycin and trimetazidine on myringosclerosis. J Otolaryngol Head Neck Surg 37(6):882–887

    PubMed  Google Scholar 

  45. Rhee CK (2009) Effect of low level laser on cochlear inner ear and tinnitus. In: Simunovic Z (ed) Laser in medicine science and praxis. Medicinka Naklada, Croatia, pp 263–370

    Google Scholar 

  46. Holme TA (2015) Denaturation. Chemistry explained. http://www.chemistryexplained.com/Co-Di/Denaturation.html. Assessed 13 Oct 2015

  47. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5:46

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) and the Ministry of Science, ICT and Future Planning (NRF-2014M3A9E5073705 and NRF-2010-0024301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Whan Suh.

Ethics declarations

All animals were treated in accordance with the Guide for the Care and Use of Laboratory Animals, which was formulated by the Institute of Laboratory Animal Resources of the Commission on Life Sciences.

Additional information

Tae-Hyun Moon and Min Young Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, TH., Lee, M.Y., Jung, J.Y. et al. Safety assessment of trans-tympanic photobiomodulation. Lasers Med Sci 31, 323–333 (2016). https://doi.org/10.1007/s10103-015-1851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1851-1

Keywords

Navigation