Skip to main content

Advertisement

Log in

Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm2. Irradiation of the hUCM cells shows a significant (p < 0.05) increase in cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p < 0.001) higher than that in the non-irradiated groups. The present study clearly demonstrates the ability of red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO et al (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331

    Article  CAS  PubMed  Google Scholar 

  2. Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY et al (2005) Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118(23):1987–1993

    CAS  Google Scholar 

  3. Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E (2013) Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. In Vitro Cell Dev Biol Anim 49(7):515–523

    Article  CAS  PubMed  Google Scholar 

  4. Pountos I, Georgouli T, Henshaw K, Bird H, Jones E, Giannoudis PV (2010) The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J Orthop Trauma 24(9):552–556

    Article  PubMed  Google Scholar 

  5. Agha R, Beeson W, Beeson WH (2012) In vitro comparison of light-emitting diodes and carnosic acid effects on keratinocyte proliferation and wound healing. Am J Cosmet Surg 29(1):30–37

    Article  Google Scholar 

  6. Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang C-Y, Abiko Y et al (2010) Low-level Er: YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25(4):559–569

    Article  PubMed  Google Scholar 

  7. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99

    Article  PubMed  Google Scholar 

  8. Li W, Chen H, Wang C (2006) Effect of light emitting diode irradiation on proliferation of human bone marrow mesenchymal stem cells. J Med Biol Eng 26(1):35

    Google Scholar 

  9. Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B Biol 140:344–358

    Article  CAS  Google Scholar 

  10. Kreslavskia VD, Fominaa IR, Losc DA, Carpentierd R, Kuznetsovc VV, Allakhverdieva SI (2012) Photochemistry reviews. J Photochem Photobiol C: Photochem Rev 13:190–203

    Article  Google Scholar 

  11. Fekrazad R, Seraj B, Ghadimi S, Tamiz P, Mottahary P, Dehghan M-M (2014) The effect of low-level laser therapy (810 nm) on root development of immature permanent teeth in dogs. Lasers Med Sci 1–7

  12. Min PK, Goo BL (2013) 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study. Laser Ther 22(1):43

    Article  PubMed Central  PubMed  Google Scholar 

  13. Leal ECP, Lopes-Martins RB, Frigo L, De Marchi T, Rossi RP, De Godoi V et al (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532

    Article  Google Scholar 

  14. Sampaio SCPO, de C Monteiro JS, Cangussu MCT, Santos GMP, dos Santos MAV, dos Santos JN et al (2013) Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing. Lasers Med Sci 28(3):799–806

    Article  Google Scholar 

  15. de Sousa APC, Paraguassu GM, Silveira NTT, de Souza J, Cangussu MCT, dos Santos JN et al (2013) Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28(3):981–987

    Article  PubMed  Google Scholar 

  16. Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR (2012) Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res 91(10):961–966

    Article  CAS  PubMed  Google Scholar 

  17. Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S (2012) Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound Repair Regen 20(2):226–235

    Article  PubMed  Google Scholar 

  18. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23(2):167–171

    Article  CAS  PubMed  Google Scholar 

  19. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E et al (2012) Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells. Cytotherapy 14(8):948–953

    Article  CAS  PubMed  Google Scholar 

  20. Kaviani M, Ezzatabadipour M, Nematollahi-Mahani SN, Salehinejad P, Mohammadi M, Kalantar SM et al (2014) Evaluation of gametogenic potential of vitrified human umbilical cord Wharton’s jelly-derived mesenchymal cells. Cytotherapy 16(2):203–212

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS (2011) Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med 6(1):95–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

  23. AlGhamdi KM, Kumar A, Moussa NA, Hassan A (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  24. Li W-T, Leu Y-C, Wu J-L (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(S-157):S-157–S-165

    CAS  Google Scholar 

  25. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Wang Q-L, Chen X, Mi X-q (2014) Photobiomodulation for cobalt chloride-induced hypoxic damage of RF/6A cells by 670 nm light-emitting diode irradiation. Int J Photoenergy 2014, 971491

    Google Scholar 

  27. Wong-Riley MTT, Bai X, Buchmann E, Whelan HT (2001) Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 12(14):3033–3037

    Article  CAS  PubMed  Google Scholar 

  28. Ekizer A, Uysal T, Guray E, Yuksel Y (2013) Light-emitting diode photobiomodulation: effect on bone formation in orthopedically expanded suture in rats—early bone changes. Lasers Med Sci 28(5):1263–1270

    Article  PubMed  Google Scholar 

  29. Asai T, Suzuki H, Kitayama M, Matsumoto K, Kimoto A, Shigeoka M et al (2014) The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells. Kobe J Med Sci 60(1):E12–E18

    PubMed  Google Scholar 

  30. Wu HP, Persinger MA (2011) Increased mobility and stem-cell proliferation rate in Dugesia tigrina induced by 880nm light emitting diode. J Photochem Photobiol B 102(2):156–160

    Article  CAS  PubMed  Google Scholar 

  31. Peng F, Wu H, Zheng Y, Xu X, Yu J (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653

    Article  PubMed  Google Scholar 

  32. Ong W-K, Chen H-F, Tsai C-T, Fu Y-J, Wong Y-S, Yen D-J et al (2013) The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34(8):1911–1920

    Article  CAS  PubMed  Google Scholar 

  33. Seo Y-K, Park J-K, Song C, Kwon S-Y (2014) Comparison of light-emitting diode wavelength on activity and migration of rabbit ACL cells. Lasers Med Sci 29(1):245–255

    Article  PubMed  Google Scholar 

  34. Sensebé L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87(9S):S49–S53

    Article  PubMed  Google Scholar 

  35. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320(3):914–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Dehghani-soltani was a MSc student at Department of Anatomy, Afzalipour School of Medicine, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Noureddin Nematollahi-Mahani.

Ethics declarations

Institutional ethical review board committee at Kerman University of Medical Sciences, Kerman, Iran, approved the study. A written consent was taken from parents for the use of umbilical cord.

Funding

Kerman University of Medical Sciences Research affair supported this research by a grant numbered 92–58.

Conflict of interest

The authors declare that they have no conflict of interest

Informed consent

The mothers donated umbilical cords after a written informed consent was obtained

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani Soltani, S., Babaee, A., Shojaei, M. et al. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Lasers Med Sci 31, 255–261 (2016). https://doi.org/10.1007/s10103-015-1846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1846-y

Keywords

Navigation