Skip to main content

Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial

Abstract

Background

The common regime of eccentric exercise in use for Achilles tendinopathy is somewhat arduous and compliance issues can arise. This is the first study to investigate the effectiveness of a regime of fewer exercise sessions combined with photobiomodulation for the treatment of Achilles tendinopathy.

Methods

A double blind randomized controlled trial and intention-to-treat analysis were performed. Eighty participants, 18–65 years with Achilles tendinopathy and symptoms for longer than 3 months, were included in the trial. Participants randomized into one of four groups; 1 (Placebo + Ex Regime 1) or 2 (Laser + Ex Regime 1) or 3 (Placebo + Ex Regime 2) or 4 (Laser + Ex Regime 2). The primary outcome measure was the Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire. Outcomes were collected at baseline, week 4 and week 12.

Results

Sixteen participants were lost to follow-up at 12 weeks, 4 of which due to adverse reactions. As per intention to treat, missing data were imputed, 80 participants were included in the final analysis. For VISA-A at 12 weeks, group 4 achieved significant gains over the other 3 groups: group 1 (18.5 [9.1, 27.9]), group 2 (10.4 [1.5, 19.2]), group 3 (11.3 [3.0, 19.6]). There was a moderate effect size in favour of exercise twice per week (7.2 [−1.8, 16.2], ES .7).

Conclusions

Twice-daily exercise sessions are not necessary as equivalent results can be obtained with two exercise sessions per week. The addition of photobiomodulation as adjunct to exercise can bring added benefit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. de Jonge S, van den Berg C, de Vos RJ, van der Heide HJL (2011) Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med 45(13):1026–1028

    PubMed  Article  Google Scholar 

  2. Wang JHC, Guo Q, Li B (2012) Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther 25(2):133–141

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. Wang JHC, Losifidis MI, Fu FH (2006) Biomechanical basis for tendinopathy. Clin Orthop Relat Res 443:320–332

    PubMed  Article  Google Scholar 

  4. Zhang J, Wang JH (2010) Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res 28(5):639–643. doi:10.1002/jor.21046

    PubMed  Google Scholar 

  5. Zhang J, Wang JH (2010) Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J Orthop Res 28(2):198–203. doi:10.1002/jor.20962

    PubMed  Google Scholar 

  6. Danielson P (2009) Reviving the “biochemical” hypothesis for tendinopathy: new findings suggest the involvement of locally produced signal substances. Br J Sports Med 43(4):265–268

    PubMed  CAS  Article  Google Scholar 

  7. Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ et al (2014) The pain of tendinopathy: physiological or pathophysiological? Sports Med 44(1):9–23. doi:10.1007/s40279-013-0096-z

    PubMed  Article  Google Scholar 

  8. Khan KM, Scott A (2009) Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med 43(4):247–251

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P et al (2010) Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med 38(4):749–756. doi:10.1177/0363546509350915

    PubMed  Article  Google Scholar 

  10. Kubo K, Kanehisa H, Fukunaga T (2002) Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 538(1):219–226

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. Langberg H, Ellingsgaard H, Madsen T, Jansson J, Magnusson SP, Aagaard P et al (2007) Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis. Scand J Med Sci Sports 17(1):61–66

    PubMed  CAS  Google Scholar 

  12. Mafi N, Lorentzon R, Alfredson H (2001) Superior short-term results with eccentric calf muscle training compared to concentric training in a randomized prospective multicenter study on patients with chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc 9(1):42–47

    PubMed  CAS  Article  Google Scholar 

  13. Miller BF, Olesen JL, Hansen M, Dassing S, Crameri RM, Welling RJ et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567(3):1021–1033

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  14. Langberg H, Rosendal L, Kjaer M (2001) Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. J Physiol 534(1):297–302

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  15. Langberg H, Skovgaard D, Asp S, Kjaer M (2000) Time pattern of exercise induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int 67(1):41–44

    PubMed  CAS  Article  Google Scholar 

  16. Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH et al (2009) Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports 19(6):790–802

    PubMed  CAS  Article  Google Scholar 

  17. Alfredson H, Pietila T, Jonsson P, Lorentzon R (1998) Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med 26(3):360–366

    PubMed  CAS  Google Scholar 

  18. Stanish WD, Rubinovich RM, Curwiin S (1986) Eccentric exercise in chronic tendinitis. Clin Orthop Relat Res 208:65–68

    PubMed  Google Scholar 

  19. Silbernagel K, Thomee R, Eriksson B, Karlsson J (2007) Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy: a randomized controlled study. Am J Sports Med 35(6):897–906

    PubMed  Article  Google Scholar 

  20. Malliaras P, Barton CJ, Reeves ND, Langberg H (2013) Achilles and patellar tendinopathy loading programmes. A systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med 43:267–286. doi:10.1007/s40279-013-0019-z

    PubMed  Article  Google Scholar 

  21. Beyer R, Kongsgaard M, Kjaer BH, Ohlenslaeger T, Kjaer M, Magnussen SP. Heavy slow resistance versus eccentric training as a treatment for Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015. doi:10.1177/0363546515584760

  22. Habets B, van Cingel REH. Eccentric exercise training in chronic mid-portion Achilles tendinopathy: A systematic review on different protocols. Scand J Med Sci Sports 2014. doi: 10.1111/sms.12208.

  23. Meyer A, Tumilty S, Baxter GD (2009) Eccentric exercise protocols for chronic non-insertional Achilles tendinopathy: how much is enough? Scand J Med Sci Sports 19(5):609–615

    PubMed  CAS  Article  Google Scholar 

  24. Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38(8):779–786

    PubMed  Article  Google Scholar 

  25. Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: Implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378

    PubMed  Article  Google Scholar 

  26. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: Involvement of reactive oxygen species. Lasers Surg Med 22(4):212–218

    PubMed  CAS  Article  Google Scholar 

  27. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733

    PubMed  Article  Google Scholar 

  28. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases A.T.P. level in cells cultivated in vitro. J Photochem Photobiol B 27(3):219–223

    PubMed  CAS  Article  Google Scholar 

  29. Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40(1):76–80

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  30. Oliveira FS, Pinfildi CE, Parizoto NA, Liebano RE, Bossini PS, Garcia EB et al (2009) Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. Lasers Surg Med 41(4):271–276

    PubMed  Article  Google Scholar 

  31. Reddy GK, Stehno-Bittel L, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit Achilles tendons. Lasers Surg Med 22(5):281–287

    PubMed  CAS  Article  Google Scholar 

  32. Ribeiro MAG, Albuquerque RLC Jr, Ramalho LMP, Pinheiro ALB, Bonjardim LR, Da Cunha SS (2009) Immunohistochemical assessment of myofibroblasts and lymphoid cells during wound healing in rats subjected to laser photobiomodulation at 660 nm. Photomed Laser Surg 27(1):49–55

    PubMed  Article  Google Scholar 

  33. Salate ACB, Barbosa G, Gaspar P, Koeke PU, Parizotto NA, Benze BG et al (2005) Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats. Photomed Laser Surg 23(5):470–475

    PubMed  Article  Google Scholar 

  34. Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD (2010) Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed Laser Surg 28(1):3–16

    PubMed  Article  Google Scholar 

  35. Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB (2003) Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sport Med 13(1):11–15

    PubMed  Article  Google Scholar 

  36. Baxter GD (2002) Contraindications. In: Kitchen S (ed) Electrotherapy: evidence based practice. Churchill Livingstone, London, p 186

    Google Scholar 

  37. Butler DS (2000) The Sensitive Nervous System. Noi Group Publications, Adelade, South Australia, pp 196–201, 413

    Google Scholar 

  38. Robinson JM, Cook JL, Purdam C, Visentini PJ, Ross J, Maffulli N et al (2001) The V.I.S.A.-A. questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopathy. Br J Sports Med 35(5):335–341

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  39. Childs JD, Piva SR, Fritz JM (2005) Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 30(11):1331–1334

    PubMed  Article  Google Scholar 

  40. Tumilty S, Munn J, Abbott JH, McDonough S, Hurley DA, Baxter GD (2008) Laser therapy in the treatment of Achilles tendinopathy: a pilot study. Photomed Laser Surg 26(1):25–30

    PubMed  Article  Google Scholar 

  41. Herrington L, McCulloch R (2007) The role of eccentric training in the management of Achilles tendinopathy: a pilot study. Phys Ther Sport 8(4):191–196

    Article  Google Scholar 

  42. Rompe JD, Nafe B, Furia JP, Maffulli N (2007) Eccentric loading, shock-wave treatment, or a wait- and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. Am J Sports Med 35(3):374–383

    PubMed  Article  Google Scholar 

  43. Sayana MK, Maffulli N (2007) Eccentric calf muscle training in non-athletic patients with Achilles tendinopathy. J Sci Med Sport 10(1):52–58

    PubMed  Article  Google Scholar 

  44. Silbernagel KG, Thomee R, Thomee P, Karlsson J (2001) Eccentric overload training for patients with chronic Achilles tendon pain—a randomised controlled study with reliability testing of the evaluation methods. Scand J Med Sci Sports 11(4):197–206

    PubMed  CAS  Article  Google Scholar 

  45. Stevens M, Tan CH (2014) Effectiveness of the Alfredson protocol compared with a lower repetition-volume protocol for mid-portion Achilles tendinopathy: a randomized controlled trial. J Orthop Sports Phys Ther 44(2):59–67

    PubMed  Article  Google Scholar 

  46. Yelland MJ, Sweeting KR, Lyfogt JA, Ng SK, Scuffman PA, Evans KA (2011) Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: a randomized trial. Br J Sports Med 45(5):421–428

    PubMed  Article  Google Scholar 

  47. De Vos RJ, Weir A, Van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H et al (2010) Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA 303(2):144–149

    PubMed  Article  Google Scholar 

  48. Rompe JD, Furia J, Maffulli N (2008) Eccentric loading compared with shock wave treatment for chronic insertional achilles tendinopathy: a randomized, controlled trial. J Bone Joint Surg Am 90(1):52–61

    PubMed  Article  Google Scholar 

  49. Rompe JD, Furia J, Maffulli N (2009) Eccentric loading versus eccentric loading plus shock-wave treatment for midportion achilles tendinopathy: a randomized controlled trial. Am J Sports Med 37(3):463–470

    PubMed  Article  Google Scholar 

  50. WALT. Dosage Recommendations and Scientific Guidelines. World Association of Laser Therapy. 2010. http://waltza.co.za/documentation-links/recommendations/dosage-recommendations/. Accessed 16 July 2015.

  51. Law D, McDonough S, Bleakley C, Baxter GD, Tumilty S. Laser acupuncture for treating musculoskeletal pain: A systematic review with meta-analysis. J Acupunct Meridian Stud. 2014. doi: 10.1016/j.jams.2014.06.015.

  52. Öhberg L, Lorentzon R, Alfredson H (2004) Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at follow up. Br J Sports Med 38(1):8–11

    PubMed  PubMed Central  Article  Google Scholar 

  53. van der Plas A, de Jonge S, de Vos RJ, van der Heide HJL, Verhaar JAN, Weir A et al (2012) A 5 year follow-up study of Alfredson’s heel-drop exercise programme in chronic midportion Achilles tendinopathy. Br J Sports Med 46(3):214–218

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Ms Aleksandra Macznik PhD candidate at the School of Physiotherapy Otago University was employed as a research assistant and contributed to participant recruitment, data collection/providing the intervention.

Ms Poonam Mehta PhD candidate at the School of Physiotherapy Otago University was employed as a research assistant and contributed to participant recruitment, data collection/providing the intervention.

This study was funded by the University of Otago Research Grant (UORG). The University played no role in design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review or approval of the manuscript.

The laser device was provided by LiteCure LLC, 250 Corporate Blvd Ste B, Newark, DE 19702, USA. This company played no part in design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Tumilty.

Ethics declarations

Ethics approval was granted by the Health and Disability Ethics Committee of New Zealand on 1 August 2013; ref 13/NTA/102.

The trial was registered with the Australia New Zealand Clinical Trials Register (ANZCTR), ref; ACTRN12613000662763.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tumilty, S., Mani, R. & Baxter, G.D. Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial. Lasers Med Sci 31, 127–135 (2016). https://doi.org/10.1007/s10103-015-1840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1840-4

Keywords

  • Dose response
  • Exercise therapy
  • Laser therapy
  • Rehabilitation