Skip to main content

Advertisement

Log in

Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this controlled experimental study was to analyze the changes in the Achilles tendons of rats with experimentally induced tendinitis after treatment with platelet-rich plasma (PRP) and/or laser therapies by histometry to quantify fibroblasts and by Raman spectroscopy to determine the biochemical concentration of collagen types I and III. Fifty-four male Wistar rats were divided into six treatment groups: control (G1); PRP only (G2); irradiation with 660 nm laser (G3); irradiation with 830 nm laser (G4); PRP plus 660 nm laser irradiation (G5); and PRP plus 830 nm laser irradiation (G6). Injuries (partial tenotomy) were inflicted in the middle third of the Achilles tendon, with PRP added prior to suture in the appropriate experimental groups. A diode laser (model Laser Flash® III, DMC Equipamentos Ltda, São Carlos, SP, Brazil) that can be operated in two wavelengths 660 and 830 nm was used for irradiation treatments. The irradiation protocol was energy density of 70 J/cm2, 20 s irradiation time, and 0.028 cm2 spot area, per point in three points in the injured. The histometry was made in micrographical images of the H&E stained sections and evaluated by ImageJ (version 1.46r)®. Raman spectra were collected using a dispersive spectrometer at 830 nm excitation, 200 mW power, and 10 s integration time (P-1 Raman system, Lambda Solutions, Inc. MA, USA). The relative amount of type I collagen was significantly greater in the PRP plus 830 nm laser irradiation group (468 ± 188) than in the control (147 ± 137), 630 nm laser only (191 ± 117), and 830 nm laser only (196 ± 106) groups (p < 0.01), while the quantity of type III collagen was significantly greater in the PRP-only group compared to both irradiated groups without PRP (p < 0.05). Treatment with PRP combined with irradiation at 830 nm resulted in a larger number of fibroblasts and increased concentration of type I collagen, thus accelerating the healing of the injured tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Longo UG, Ronga M, Maffulli N (2009) Achilles tendinopathy. Sports Med Arthrosc Rev 17(2):112–126

    Article  Google Scholar 

  2. Rocha Júnior AM, Oliveira RG, Faria RE, Andrade LCF, Aarestrup FM (2006) Modulation of fibroblast proliferation and inflammatory response by low-intensity laser therapy in tissue repair process. An Bras Dermatol 81(2):150–156. doi:10.1590/S0365-05962006000200006

    Article  Google Scholar 

  3. Scharffetter K, Kulozik M, Lankat-Buttgereit B, Hatamochi A, Söhnchen R, Krieg T (1989) Localization of collagen alpha-1 (I) gene expression during wound healing by in situ hybridization. J Investig Dermatol 93:405–412. doi:10.1111/1523-1747.ep12280295

    Article  PubMed  CAS  Google Scholar 

  4. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87:187–202. doi:10.2106/JBJS.D.01850

    Article  PubMed  Google Scholar 

  5. Frasson NF, Taciro C, Parizotto NA (2009) Nanostructural analysis of therapeutic ultrasound effect on rat tendon healing process. Fisioter Pesqui 16(3):198–204. doi:10.1590/S1809-29502009000300002

    Article  Google Scholar 

  6. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (2014) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 29(2):559–564

    Article  PubMed  Google Scholar 

  7. Barbosa D, Souza RA, Xavier M, Silva FF, Arisawa EAL, Villaverde AB (2013) Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci 28:651–656

    Article  PubMed  Google Scholar 

  8. Baroni BF, Leal ECP Jr, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658

    Article  PubMed  Google Scholar 

  9. Miranda EF, Leal Junior ECP, Marchetti PH, Dal Corso S (2014) Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic obstructive pulmonary disease: preliminary results of a randomized controlled trial. Lasers Med Sci 29(1):359–365. doi:10.1007/s10103-013-1359-5

    Article  PubMed  Google Scholar 

  10. Morais NCR, Barbosa AM, Vale ML, Villaverde AB, Lima CJ, Cogo JC, Zamuner SR (2010) Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis. Photomed Laser Surg 28:227–232

    Article  PubMed  Google Scholar 

  11. Al-Watban FA, Andres BL (2006) Polychromatic LED in oval full-thickness wound healing in non-diabetic and diabetic rats. Photomed Laser Surg 24(1):10–16

    Article  PubMed  Google Scholar 

  12. Da Silva MM, Procópio Alves L, Navarro RS, de Lima CJ, Munin E, Das Graças Vilela-Goulart M, Fernandes Gomes M, Castillo Salgado MA, Zângaro RA (2014) Experimental full-thickness burns induced by CO2 laser. Lasers Med Sci 29:1709–1714

    Article  Google Scholar 

  13. Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153(4):963–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Carrinho PM, Renno ACM, Koeke P, Salate ACB, Parizotto NA, Vidal BC (2006) Comparative study using 685-nm and 830-nm lasers in the tissue repair of tenotomized tendons in mouse. Photomed Laser Surg 24(6):754–758. doi:10.1089/pho.2006.24.754

    Article  PubMed  Google Scholar 

  15. Neves MA, Pinfildi CE, Wood VT, Gobbato RC, da Silva FM, Parizottro NA, Hochman B, Ferreira LM (2011) Different power settings of LLLT on the repair of the calcaneal tendon. Photomed Laser Surg 29:663–668

    Article  PubMed  CAS  Google Scholar 

  16. Oliveira FS, Pinfildi CE, Parizoto NA, Liebano RE, Bossini PS, Garcia EB, Ferreira LM (2009) Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. Lasers Surg Med 41(4):271–276

    Article  PubMed  Google Scholar 

  17. Joensen J, Gjerdet NR, Hummelsund S, Iversen V, Lopes-Martins RA, Bjordal JM (2012) An experimental study of low-level laser therapy in rat Achilles tendon injury. Lasers Med Sci 27:103–111. doi:10.1007/s10103-011-0925-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xavier M, Souza RA, Pires VA, Santos AP, Aimbire F, Silva Junior JÁ, Albertini R, Villaverde AB (2014) Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats. Lasers Med Sci 29:85–90

    Article  PubMed  Google Scholar 

  19. de Mos M, van der Windt AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, van Osch GJ (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36:1171–1178

  20. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA (2009) Platelet-rich plasma: from basic science to clinical applications. Am J Sport Med 37(11):2259–2272. doi:10.1177/0363546509349921

    Article  Google Scholar 

  21. Del Buono A, Papalia R, Denaro V, Maccauro G, Maffulli N (2011) Platelet rich plasma and tendinopathy: state of the art. Int J Immunopathol Pharmacol 24(1 Suppl 2):79–83

    PubMed  Google Scholar 

  22. Mishra A, Harmon K, Woodall J, Vieira A (2011) Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol 2:120–137

    Google Scholar 

  23. Taylor DW, Petrera M, Hendry M, Theodoropoulos JS (2011) Asystematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clin J Sport Med 21(4):344–352

    Article  PubMed  Google Scholar 

  24. Monto RR (2012) Platelet rich plasma treatment for chronic Achilles tendinosis. Foot Ankle Int 33(5):379–385

    Article  PubMed  Google Scholar 

  25. Wang X, Qiu Y, Triffitt J, Carr A, Xia Z, Sabokbar A (2012) Proliferation and differentiation of human tenocytes in response to platelet rich plasma: an in vitro and in vivo study. J Orthop Res 30(6):982–990

    Article  PubMed  Google Scholar 

  26. Barbosa D, de Souza RA, de Carvalho WR, Xavier M, de Carvalho PK, Cunha TC, Arisawa EA, Silveira L Jr, Villaverde AB (2013) Low-level laser therapy combined with platelet-rich plasma on the healing calcaneal tendon: a histological study in a rat model. Lasers Med Sci 28:1489–1494. doi:10.1007/s10103-012-1241-x

    Article  PubMed  Google Scholar 

  27. Choo-Smith LP, Edwards HG, Endtz HP, Kros JM, Heule F, Barr H, Robinson JS Jr, Bruining HA, Puppels GJ (2002) Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67(1):1–9. doi:10.1002/bip.10064

    Article  PubMed  CAS  Google Scholar 

  28. Rocha R, Silveira L Jr, Villaverde AB, Pasqualucci CA, Costa MS, Brugnera A Jr, Pacheco MTT (2007) Use of near- infrared Raman spectroscopy for identification of atherosclerotic plaques in the carotid artery. Photomed Laser Surg 25:480–484

    Google Scholar 

  29. Duarte J, Pacheco MT, Villaverde AB, Machado RZ, Zângaro RA, Silveira L Jr (2010) Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics. J Biomed Opt 15(4):047002. doi:10.1117/1.3463006

    Article  PubMed  Google Scholar 

  30. Bispo JA, de Sousa Vieira EE, Silveira L Jr, Fernandes AB (2013) Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. J Biomed Opt 18(8):87004. doi:10.1117/1.JBO.18.8.087004

    Article  PubMed  Google Scholar 

  31. Moreira LM, Silveira L Jr, Santos FV, Lyon JP, Rocha R, Zângaro RA, Villaverde AB, Pacheco MTT (2008) Raman spectroscopy: a powerful technique for biochemical analysis and diagnosis. Spectroscopy 22:1–19. doi:10.3233/SPE-2008-0326

    Article  CAS  Google Scholar 

  32. Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Pacheco MT (2013) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemical. J Biomed Opt 17(7):077003, (2012). Erratum in: J Biomed Opt. (2013) 18(3): 039801

    Article  Google Scholar 

  33. Souza RA, Xavier M, Mangueira NM, Santos AP, Pinheiro ALB, Villaverde AB, Silveira L Jr (2014) Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 29:797–804

    Article  PubMed  Google Scholar 

  34. Carmona JU, Arguelles D, Climent F, Prades M (2007) Autologous platelet concentrates as a treatment of horses with osteoarthiritis: preliminary pilot clinical study. J Equine Vet Sci 27(4):167–170. doi:10.1061/j.jevs.2007.02.2007

    Article  Google Scholar 

  35. Froum SJ, Wallace SS, Tarnow DP, Cho SC (2002) Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: three bilateral case reports. Int J Periodontics Restorative Dent 22(1):45–53

    PubMed  Google Scholar 

  36. Dugrillon A, Klüter H (2002) Current use of platelet concentrates for topical application in tissue repair. Transfus Med Hemother 29(23):67–70. doi:10.1159/000057092

    Article  Google Scholar 

  37. Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7(1):52–62

    Article  PubMed  CAS  Google Scholar 

  38. Karu T (1998) The science of low power laser therapy. Gordon and Breach Science Publishers, Australia, pp 23–29

    Google Scholar 

  39. Stone N, Prieto MCH, Crow P, Uff J, Ritchie AW (2007) The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies. Anal Bioanal Chem 387:1657–1668. doi:10.1007/s00216-006-0937-9

    Article  PubMed  CAS  Google Scholar 

  40. Dehring KA, Smukler AR, Roessler BJ, Morris MD (2006) Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl Spectrosc 60:366–372

    Article  PubMed  CAS  Google Scholar 

  41. Bonifacio A, Sergo V (2010) Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib Spectrosc 2:314–317

    Article  Google Scholar 

  42. Liu SH, Yang RS, Al-Shaikh R, Lane JM (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop 318:265–278

    PubMed  Google Scholar 

  43. Mangueira NM, Xavier M, de Souza RA, Salgado MAC, Silveira L Jr, Villaverde AB (2015) Effect of Low-level Laser therapy in an experimental model of osteoarthitis in rats evaluated through Raman Spectroscopy. Photomed Laser Surg 33:145–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. Silveira Jr. acknowledges FAPESP (São Paulo Research Foundation) for the partial support to this work, through the grant no. 2009/018788-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Balbin Villaverde.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, P.K., Silveira, L., Barbosa, D. et al. Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry. Lasers Med Sci 31, 19–26 (2016). https://doi.org/10.1007/s10103-015-1819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1819-1

Keywords

Navigation