Skip to main content

Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells

Abstract

Photodynamic therapy (PDT) using photosensitizer induces several types of cell death, such as apoptosis, necrosis, and autophagy, depending on the PDT procedure, photosensitizer type, and cell type. We previously demonstrated that PDT using the photosensitizer talaporfin sodium (mono-l-aspartyl chlorine e6, NPe6; NPe6-PDT) induces both mitochondrial apoptotic and necrotic cell death in human glioblastoma T98G cells. However, details regarding the mechanism of necrosis caused by NPe6-PDT are unclear. Here, we investigated whether or not necroptosis, a recently suggested form of programmed necrosis, is involved in the necrotic cell death of NPe6-PDT-treated T98G cells. Leakage of lactate dehydrogenase (LDH) from the cell layer into conditioned medium was significantly increased by NPe6 (25 and 50 μg/ml)-PDT, indicating that NPe6-PDT induces necrosis in these cells. NPe6 (25 μg/ml)-PDT treatment also induced conversion of microtubule-associated protein 1 light-chain 3 (LC3)-I into phosphatidylethanolamine-conjugated LC3-II accompanying autophagosome formation, indicators of autophagy; however, of note, NPe6 (50 μg/ml)-PDT did not induce such autophagic changes. In addition, both necrostatin-1 (a necroptosis inhibitor) and knockdown of necroptotic pathway-related proteins [e.g., receptor interacting serine-threonine kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] inhibited leakage of LDH caused by NPe6 (25 μg/ml)-PDT. Taken together, the present findings revealed that NPe6-PDT-induced necrotic cell death is mediated in part by the necroptosis pathway in glioblastoma T98G cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    PubMed Central  PubMed  Article  Google Scholar 

  2. 2.

    Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107

    CAS  PubMed  Google Scholar 

  3. 3.

    Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lockshin RA, Zakeri Z (2004) Caspase-independent cell death? Oncogene 23(16):2766–2773

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36(12):2491–2502

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Leist M, Nicotera P (1997) The shape of cell death. Biochem Biophys Res Commun 236(1):1–9

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109(14):5322–5327

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J (2011) 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10(12):1868–1878

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Miki Y, Akimoto J, Yokoyama S, Homma T, Tsutsumi M, Haraoka J, Hirano K, Beppu M (2013) Photodynamic therapy in combination with talaporfin sodium induces mitochondrial apoptotic cell death accompanied with necrosis in glioma cells. Biol Pharm Bull 36(2):215–221

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Kessel DH, Price M, Reiners JJ Jr (2012) ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 8(9):1333–1341

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA (2008) A method to measure cardiac autophagic flux in vivo. Autophagy 4(3):322–329

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Miki Y, Akimoto J, Hiranuma M, Fujiwara Y (2014) Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci 39(6):821–827

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1-2):228–243

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Moujalled DM, Cook WD, Murphy JM, Vaux DL (2014) Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 5, e1086

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Firczuk M, Nowis D, Golab J (2011) PDT-induced inflammatory and host responses. Photochem Photobiol Sci 10(5):653–663

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ogawa A, Wada T, Tedo T, Namiki T (1979) Delayed radiation necrosis of the brain. Neurol Med Chir (Tokyo) 19(4):367–372

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Talaporfin sodium (NPe6) was provided by Meiji Seika Pharma Co., Ltd. (Tokyo, Japan). The semiconductor laser irradiation device was provided by Panasonic Healthcare Co., Ltd. (Ehime, Japan).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Fujiwara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miki, Y., Akimoto, J., Moritake, K. et al. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci 30, 1739–1745 (2015). https://doi.org/10.1007/s10103-015-1783-9

Download citation

Keywords

  • Autophagy
  • Necroptosis
  • Glioma
  • Photodynamic therapy
  • Talaporfin sodium