Skip to main content
Log in

Performance analysis of the beam shaping method on optical auditory neural stimulation in vivo

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Previous research has shown that infrared neural stimulation (INS) could be an alternative approach to evoke auditory neural activities. The laser beam property of the fiber output is a considerable aspect of INS, and the corresponding effects on auditory responses in vivo deserve further discussions. The paper presents a beam-shaped infrared laser stimulation method of auditory nerves. Pulsed 980-nm fiber-coupled laser systems were used as the radiant sources. The gradient reflective index (GRIN) lens was added at the port of the optical fiber as a beam shaping structure. The laser spot sizes and properties between the beam-shaped output and the bare fiber output were preliminarily analyzed by a laser beam profiler. And further experiments in vivo with four deafened adult guinea pigs were conducted. Optically evoked auditory brainstem responses (OABRs) of the animal samples were recorded and compared under the two output configurations. The results show a decrease of the beam divergence compared to a bare output fiber, and the INS with a beam shaping design evokes above 13 % increase on OABR amplitudes than the bare fiber output, especially when enlarging the distance between the optical fiber and the nerve tissue. The beam shaping design can enhance the effect of INS for evoking auditory nerves, and it could be an optimized design in the future implementation of optical cochlear implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003

  2. Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW (2014) Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 84:181–190

    Article  PubMed Central  PubMed  Google Scholar 

  3. Xia N, Wu XY, Wang X, Mou ZX, Wang MQ, Gu X, Zheng XL, Hou WS (2014) Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea. Lasers Med Sci 29:343–349

    Article  PubMed  Google Scholar 

  4. Cayce JM, Friedman RM, Jansen ED, Mahavaden-Jansen A, Roe AW (2011) Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage 57:155–166

    Article  PubMed Central  PubMed  Google Scholar 

  5. Fried NM, Lagoda GA, Scott NJ, Su LM, Burnett AL (2008) Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. J Endourol 22:409–413

    Article  PubMed  Google Scholar 

  6. Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter CP (2007) Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt 12:21008

    Article  Google Scholar 

  7. Zhang K, Ma Y, Zhou Y, Wang Q (2015) Effects of heat conduction on the spatial selectivity of infrared stimulation in the cochlea. Biomed Eng Online 14:17

    Article  Google Scholar 

  8. Izzo AD, Richter CP, Jansen ED, Walsh JT et al (2006) Laser stimulation of the auditory nerve. Lasers Surg Med 38:745–753

  9. Rajguru SM, Matic AI, Robinson AM, Fishman AJ, Moreno LE, Bradley A, Vujanovic I, Breen J, Wells JD, Bendett M, Richter CP (2010) Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear Res 269:102–111

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schultz M, Baumhoff P, Maier H, Teudt IU, Kruger A, Lenarz T, Kral A (2012) Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomed Opt Express 3:3332–3345

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wenzel GI, Balster S, Zhang K, Lim HH, Reich U, Massow O, Lubatschowski H, Ertmer W, Lenarz T, Reuter G (2009) Green laser light activates the inner ear. J Biomed Opt 14:44007

    Article  Google Scholar 

  12. Su D, Boechat AA, Jones JD (1992) Beam delivery by large-core fibers: effect of launching conditions on near-field output profile. Appl Opt 31:5816–5821

    Article  CAS  PubMed  Google Scholar 

  13. Worthington R (1982) Acceptance-angle measurement of multimode fibers: a comparison of techniques. Appl Opt 21:3515–3519

    Article  CAS  PubMed  Google Scholar 

  14. Thompson AC, Wade SA, Brown WG, Stoddart PR (2012) Modeling of light absorption in tissue during infrared neural stimulation. J Biomed Opt 17:75002

    Article  Google Scholar 

  15. Teudt IU, Maier H, Richter CP, Kral A (2011) Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Trans Biomed Eng 58:1648–1655

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhang KY, Wenzel GI, Balster S, Lim HH, Lubatschowski H, Lenarz T, Ertmer W, Reuter G (2009) Optoacoustic induced vibrations within the inner ear. Opt Express 17:23037–23043

    Article  CAS  PubMed  Google Scholar 

  17. Ren T, He W, Li Y, Grosh K, Fridberger A (2014) Light-induced vibration in the hearing organ. Sci Rep 4:5941

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Bareket-Keren L, Hanein Y (2014) Novel interfaces for light directed neuronal stimulation: advances and challenges. Int J Nanomedicine 9(Suppl 1):65–83

    Article  PubMed Central  PubMed  Google Scholar 

  19. Teudt I, Nevel A, Izzo AD, Walsh JT, Richter CP (2007) Optical stimulation of the facial nerve: a new monitoring technique? Laryngo-scope 117:1641–1647

  20. Liljemalm R, Nyberg T, von Holst H (2013) Heating during infrared neural stimulation. Lasers Surg Med 45:469–481

    Article  PubMed  Google Scholar 

  21. Thompson AC, Wade SA, Cadusch PJ, Brown WG, Stoddart PR (2013) Modeling of the temporal effects of heating during infrared neural stimulation. J Biomed Opt 18:35004

    Article  Google Scholar 

  22. Thompson A, Wade S, Pawsey N, Stoddart P (2013) Infrared neural stimulation: influence of stimulation site spacing and repetition rates on heating. IEEE Trans Biomed Eng 60:3534-3541

  23. Knappe V, Frank F, Rohde E (2004) Principles of lasers and biophotonic effects. Photomed Laser Surg 22:411–417

    Article  PubMed  Google Scholar 

  24. Izzo AD, Walsh JJ, Ralph H, Webb J, Bendett M, Wells J, Richter CP (2008) Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys J 94:3159–3166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Izzo AD, Walsh JJ, Jansen ED, Bendett M, Webb J, Ralph H, Richter CP (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng 54:1108–1114

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Nature Science Foundation of China (no. NSFC11474185). We thank Dr. Hao Zhang from the Second Hospital of Shandong University for the guidance of animal surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xia, M., Lu, J. et al. Performance analysis of the beam shaping method on optical auditory neural stimulation in vivo. Lasers Med Sci 30, 1533–1540 (2015). https://doi.org/10.1007/s10103-015-1763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1763-0

Keywords

Navigation