Advertisement

Lasers in Medical Science

, Volume 30, Issue 5, pp 1553–1563 | Cite as

Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults

  • Raquel Munhoz da Silveira Campos
  • Ana Raimunda Dâmaso
  • Deborah Cristina Landi Masquio
  • Antonio Eduardo AquinoJr.
  • Marcela Sene-Fiorese
  • Fernanda Oliveira Duarte
  • Lian Tock
  • Nivaldo Antonio Parizotto
  • Vanderlei Salvador Bagnato
Original Article

Abstract

Recently, investigations suggest the benefits of low-level laser (light) therapy (LLLT) in noninvasive treatment of cellulite, improvement of body countering, and control of lipid profile. However, the underlying key mechanism for such potential effects associated to aerobic plus resistance training to reduce body fat and inflammatory process, related to obesity in women still unclear. The purpose of the present investigation was to evaluate the effects of combined therapy of LLLT and aerobic plus resistance training in inflammatory profile and body composition of obese women. For this study, it involved 40 obese women with age of 20–40 years. Inclusion criteria were primary obesity and body mass index (BMI) greater than 30 kg/m2 and less than 40 kg/m2. The voluntaries were allocated in two different groups: phototherapy group and SHAM group. The interventions consisted on physical exercise training and application of phototherapy (808 nm), immediately after the physical exercise, with special designed device. Proinflammatory/anti-inflammatory adipokines were measured. It was showed that LLLT associated to physical exercise is more effective than physical exercise alone to increase adiponectin concentration, an anti-inflammatory adipokine. Also, it showed reduced values of neck circumference (cm), insulin concentration (μU/ml), and interleukin-6 (pg/ml) in LLLT group. In conclusion, phototherapy can be an important tool in the obesity, mostly considering its potential effects associated to exercise training in attenuating inflammation in women, being these results applicable in the clinical practices to control related risk associated to obesity.

Keywords

Phototherapy Obesity Adiponectin Interlukin-6 

Notes

Acknowledgments

Support Foundation of São Paulo Research-FAPESP (2013/041364; 2013/19046-0; 002804928-41), National Council for Scientific and Technological Development–CNPq (150177/2014-3), and Coordination of Higher Education Personnel Training–CAPES.

Conflict of interest

The authors have nothing to disclose.

References

  1. 1.
    Gasparyan VC (2000) Method of determination of aortic valve parameters for its reconstruction with autopericardium: an experimental study. J Thorac Cardiovasc Surg 119:386–387PubMedCrossRefGoogle Scholar
  2. 2.
    Ucero AC, Sabban B, Benito-Martin A, Carrasco S, Joeken S, Ortiz A (2013) Laser therapy in metabolic syndrome-related kidney injury. Photochem Photobiol 89(4):953–960PubMedCrossRefGoogle Scholar
  3. 3.
    Mitu F, Cobzaru R, Leon MM (2013) Influence of metabolic syndrome profile on cardiovascular risk. Rev Med Chir Soc Med Nat Iasi 117(2):308–314PubMedGoogle Scholar
  4. 4.
    Padwal RS (2013) Obesity, Diabetes, and the Metabolic Syndrome: The Global Scourge. Can J Cardiol 8. pii: S0828-282X(13)01635-8.Google Scholar
  5. 5.
    Correia F, Poínhos R, Freitas P, Pinhão S, Maia A, Carvalho D, Medina JL (2006) Prevalence of the metabolic syndrome: comparison between ATPIII and IDF criteria in a feminine population with severe obesity. Acta Med Port 19(4):289–293PubMedGoogle Scholar
  6. 6.
    Caranti DA, Lazzer S, Dâmaso AR, Agosti F, Zennaro R, de Mello MT, Tufik S, Sartorio A (2008) Prevalence and risk factors of metabolic syndrome in Brazilian and Italian obese adolescents: a comparison study. Int J Clin Pract 62(10):1526–1532PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips CM, Perry IJ (2013) Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab 98(10):E1610–1619PubMedCrossRefGoogle Scholar
  8. 8.
    Matos MF, Lourenço DM, Orikaza CM, Gouveia CP, Morelli VM (2013) Abdominal obesity and the risk of venous thromboembolism among women: a potential role of interleukin-6. Metab Syndr Relat Disord 11(1):29–34PubMedCrossRefGoogle Scholar
  9. 9.
    Mirza S, Qu HQ, Li Q, Martinez PJ, Rentfro AR, McCormick JB, Fisher-Hoch SP (2011) Adiponectin/leptin ratio and metabolic syndrome in a Mexican American population. Clin Invest Med 34(5), E290PubMedCentralPubMedGoogle Scholar
  10. 10.
    Masquio DC, de Piano A, Sanches PL, Corgosinho FC, Campos RM, Carnier J, da Silva PL, Caranti DA, Tock L, Oyama LM, Oller do Nascimento CM, de Mello MT, Tufik S, Dâmaso AR (2013) The effect of weight loss magnitude on pro-/anti-inflammatory adipokines and carotid intima-media thickness in obese adolescents engaged in interdisciplinary weight loss therapy. Clin Endocrinol (Oxf) 79(1):55–64CrossRefGoogle Scholar
  11. 11.
    Lukic L, Lalic NM, Rajkovic N, Jotic A, Lalic K, Milicic T, Seferovic JP, Macesic M, Gajovic JS (2014) Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. Int J Environ Res Public Health 11(4):3586–3598PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Corgosinho FC, de Piano A, Sanches PL, Campos RM, Silva PL, Carnier J, Oyama LM, Tock L, Tufik S, de Mello MT, Dâmaso AR (2012) The role of PAI-1 and adiponectin on the inflammatory state and energy balance in obese adolescents with metabolic syndrome. Inflammation 35(3):944–951PubMedCrossRefGoogle Scholar
  13. 13.
    Su SC, Pei D, Hsieh CH, Hsiao FC, Wu CZ, Hung YJ (2011) Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol 48(2):113–119PubMedCrossRefGoogle Scholar
  14. 14.
    Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches Pde L, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Dâmaso AR, Oyama LM (2011) Visceral fat decreased by long-term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor-α and negatively with adiponectin levels in obese adolescents. Metabolism 60(3):359–365PubMedCrossRefGoogle Scholar
  15. 15.
    Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMedGoogle Scholar
  16. 16.
    Aquino AE Jr, Sene-Fiorese M, Paolillo FR, Duarte FO, Oishi JC, Pena AA Jr, Duarte AC, Hamblin MR, Bagnato VS, Parizotto NA (2013) Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet. Lasers Med Sci 28(5):1271–1280PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ryan AS, Ge S, Blumenthal JB, Serra MC, Prior SJ, Goldberg AP (2014) Aerobic Exercise and Weight Loss Reduce Vascular Markers of Inflammation and Improve Insulin Sensitivity in Obese Women. J Am Geriatr Soc 62(4):607–614PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dobrosielski DA, Barone Gibbs B, Chaudhari S, Ouyang P, Silber HA, Stewart KJ (2013) Effect of exercise on abdominal fat loss in men and women with and without type 2 diabetes. BMJ Open 3(11):e003897PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Geloneze B, Repetto EM, Geloneze SR, Tambascia MA, Ermetice MN (2006) The threshold value for insulin resistance (HOMA-IR) in an admixtured population IR in the Brazilian Metabolic Syndrome Study. Diabetes Res Clin Pract 72(2):219–220PubMedCrossRefGoogle Scholar
  20. 20.
    Shan W, Ning C, Luo X, Zhou Q, Gu C, Zhang Z, Chen X (2014) Hyperinsulinemia is associated with endometrial hyperplasia and disordered proliferative endometrium: a prospective cross-sectional study. Gynecol Oncol 32(3):606–610CrossRefGoogle Scholar
  21. 21.
    Dossus L, Becker S, Achaintre D, Kaaks R, Rinaldi S (2009) Validity of multiplex-based assays for cytokine measurements in serum and plasma from "non-diseased" subjects: comparison with ELISA. J Immunol Methods 350:125–132PubMedCrossRefGoogle Scholar
  22. 22.
    Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, American College of Sports Medicine (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41:459–471PubMedCrossRefGoogle Scholar
  23. 23.
    Kraemer WJ, Ratamess NA, French DN (2002) Resistance training for health and performance. Curr Sports Med Rep 1:165–171PubMedCrossRefGoogle Scholar
  24. 24.
    Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuda M, Shimomura I (2014) Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord 15(1):1–10PubMedCrossRefGoogle Scholar
  26. 26.
    Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome: a new world-wide definition: a consensus statement from the International Diabetes Federation. Diabet Med 23(5):469–480PubMedCrossRefGoogle Scholar
  27. 27.
    Rubio-Guerra AF, Cabrera-Miranda LJ, Vargas-Robles H, Maceda-Serrano A, Lozano-Nuevo JJ, Escalante-Acosta BA (2013) Correlation between levels of circulating adipokines and adiponectin/resistin index with carotid intima-media thickness in hypertensive type 2 diabetic patients. Cardiology 125(3):150–153PubMedCrossRefGoogle Scholar
  28. 28.
    Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML, Wang YH (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One 8(1), e54067PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26(3):335–340PubMedCrossRefGoogle Scholar
  30. 30.
    Lima AA, Spínola LG, Baccan G, Correia K, Oliva M, Vasconcelos JF, Soares MB, Reis SR, Medrado AP (2014) Evaluation of corticosterone and IL-1β, IL-6, IL-10 and TNF-α expression after 670-nm laser photobiomodulation in rats. Lasers Med Sci 29(2):709–715PubMedCrossRefGoogle Scholar
  31. 31.
    Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers Surg Med 45(6):349–357PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Amat A, Rigau J, Waynant RW, Ilev IK, Tomas J, Anders JJ (2005) Modification of the intrinsic fluorescence and the biochemical behavior of ATP after irradiation with visible and near-infrared laser light. J Photochem Photobiol B 81:26–32PubMedCrossRefGoogle Scholar
  33. 33.
    Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27:608–617Google Scholar
  34. 34.
    Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Matheucci Junior E, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358PubMedCrossRefGoogle Scholar
  35. 35.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls CF, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532PubMedCrossRefGoogle Scholar
  36. 36.
    Amadio EM, Serra AJ, Guaraldo SA, Silva JA Jr, Antônio EL, Silva F, Portes LA, Tucci PJ, Leal-Junior EC, de Carvalho PT (2015) The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci Feb 3.Google Scholar
  37. 37.
    Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424PubMedCrossRefGoogle Scholar
  38. 38.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–939PubMedCrossRefGoogle Scholar
  39. 39.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscará MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (1985) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288CrossRefGoogle Scholar
  40. 40.
    Houreld NN (2014) Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. ScientificWorldJournal 6:398412Google Scholar
  41. 41.
    Masha RT, Houreld NN, Abrahamse H (2013) Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg 31(2):47–53PubMedCrossRefGoogle Scholar
  42. 42.
    Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA (2003) Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33:783–793PubMedCrossRefGoogle Scholar
  43. 43.
    Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95(2):89–92PubMedCrossRefGoogle Scholar
  44. 44.
    Novelle MG, Contreras C, Romero-Picó A, López M, Diéguez C (2013) Irisin, two years later. Int J Endocrinol 2013:746281PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Houreld N, Abrahamse H (2007) In vitro exposure of wounded diabetic fibroblast cells to a helium-neon laser at 5 and 16 J/cm2. Photomed Laser Surg 25(2):78–84PubMedCrossRefGoogle Scholar
  46. 46.
    Houreld NN, Abrahamse H (2007) Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25(6):474–481PubMedCrossRefGoogle Scholar
  47. 47.
    Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38(1):74–83PubMedCrossRefGoogle Scholar
  48. 48.
    Preis SR, Pencina MJ, D’Agostino RB Sr, Meigs JB, Vasan RS, Fox CS (2013) Neck circumference and the development of cardiovascular disease risk factors in the Framingham Heart Study. Diabetes Care 36(1), e3PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Jamar G, Pisani LP, Oyama LM, Belote C, Masquio DC, Furuya VA, Carvalho-Ferreira JP, Andrade-Silva SG, Dâmaso AR, Caranti DA (2013) Is the neck circumference an emergent predictor for inflammatory status in obese adults? Int J Clin Pract 67(3):217–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Raquel Munhoz da Silveira Campos
    • 1
  • Ana Raimunda Dâmaso
    • 1
  • Deborah Cristina Landi Masquio
    • 1
  • Antonio Eduardo AquinoJr.
    • 2
    • 3
  • Marcela Sene-Fiorese
    • 2
  • Fernanda Oliveira Duarte
    • 4
  • Lian Tock
    • 5
  • Nivaldo Antonio Parizotto
    • 3
    • 4
  • Vanderlei Salvador Bagnato
    • 2
    • 3
  1. 1.Paulista Medicine School–Universidade Federal de São PauloSão PauloBrazil
  2. 2.São Carlos Institute of PhysicsUniversity of São Paulo (USP)São CarlosBrazil
  3. 3.Post Graduated Program of BiotechnologyFederal University of São Carlos (UFSCar)São CarlosBrazil
  4. 4.Department of PhysiotherapyTherapeutic Resouses Laboratory, Federal University of São Carlos (UFSCar)São CarlosBrazil
  5. 5.Weight ScienceSão PauloBrazil

Personalised recommendations