Abstract
Gold-based nanoparticles have been used in a number of therapeutic and diagnostic applications. The purpose of this study was to investigate the efficacy of gold–silica nanoshells (AuNS) in photothermal therapy (PTT) of rat gliomas. Rat alveolar macrophages (Ma) were used as nanoparticle delivery vectors. Uptake of AuNS (bare and PEGylated) was investigated in Ma. AuNS were incubated with Ma for 24 h. Phase contrast microscopy was used to visualize the distribution of loaded Ma in three-dimensional glioma spheroids. PTT efficacy was evaluated for both empty (Ma) and AuNS-loaded Ma (MaNS) in both monolayers and spheroids consisting of C6 rat glioma cells and Ma. Monolayers/spheroids were irradiated for 5 min with light from an 810-nm diode laser at irradiances ranging from 7 to 28 W cm−2. Monolayer survival was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay while PTT efficacy in spheroids was determined from growth kinetics and live/dead fluorescence microscopy. PTT efficacy was investigated in vivo using a Sprague–Dawley rat glioma model. Five rats received direct intracranial injection of a mixture of 104 C6 glioma cells and, 2 days later, an equal number of MaNS. Three rats received laser treatment (810 nm; 10 min; 1 W) while the remaining two served as controls (no laser treatment). The uptake ratio of bare to PEGylated AuNS by Ma was 4:1. A significant photothermal effect was observed in vitro, albeit at relatively high radiant exposures (2.1–4.2 kJ cm−2). PTT proved effective in vivo in preventing or delaying tumor development in the PTT-treated animals.
This is a preview of subscription content, access via your institution.





References
Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States 2006-2010. Neuro Oncol 15(sup 2):ii1–ii56
Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM (2014) Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 6:149–170
Kushchayev SV, Kushchayeva YS, Wiener PC, Scheck AC, Badie B, Preul MC (2012) Monocyte-derived cells of the brain and malignant gliomas; the double face of Janus. World Neurosurg. doi:10.1016/j.wneu.2012.11.059
Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-assisted macrophages in experimental gliomas. Neurosurgery 46:957–962
Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995
Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190:430–436
Hirschberg H, Baek S-K, Kwon YJ, Sun C-H, Madsen SJ (2010) Bypassing the blood brain barrier: delivery of therapeutic agents by macrophages. Proc SPIE 7548:75483Z-1-5
Madsen SJ, Baek S-K, Makkouk AR, Krasieva T, Hirschberg H (2012) Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40:507–515
Baek S-K, Makkouk AR, Krasieva T, Sun C-H, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104:439–448
Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11:922–932
Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934
Ahsan FL, Rivas IP, Khan MA, Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release 79:29–40
Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856
Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102
Madsen SJ, Wilson BC (2013) Optical properties of brain tissue. In: Madsen SJ (ed) Optical methods and instrumentation in brain imaging and therapy, 1st edn. Springer, New York, pp 1–22
Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86:165–172
Trinidad A, Hong SJ, Madsen SJ, Hirschberg H (2014) Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma. Lasers Surg Med 46:310–318
Becker M, Muller CB, De Bastiani MA, Klamt F (2013) The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in non-small cell lung cancer. Histol Histopathol 29:21–31
Chimal-Ramirez GK, Espinoza-Sanchez NA, Fuentes-Panana EM (2013) Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining and oncopromotion. J Oncol. doi:10.1155/2013/835956
Partecke LI, Gunther C, Hagemann S, Jacobi C, Merkel M, Sendler M, van Rooijen N, Kading A, Nguyen Trung D, Lorenz E, Diedrich S, Weiss FU, Heidecke CD, von Bernstorff W (2013) Induction of M2-macrophages by tumor cells and tumor growth promotion by M2-macrophages: a quid pro quo in pancreatic cancer. Pancreatology 13:508–516
Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69:1659–1667
Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H (2013) Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 45:524–532
Madsen SJ, Hirschberg H (2010) Site-specific opening of the blood-brain barrier. J Biophoton 3:356–367
Madsen SJ, Sun C-H, Tromberg BJ, Hirschberg H (2001) Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg Med 29:406–412
Acknowledgments
The authors are grateful for support from the Norwegian Radium Hospital Research Foundation. Portions of this work were made possible through access to the LAMMP Program NIBIB P41EB015890 and the Chao Cancer Center Optical Biology Shared Resource at UCI. Steen Madsen was supported, in part, by the Tony and Renee Marlon Charitable Foundation.
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical standards
All animal studies were approved by the Institutional Animal Care and Use Committee at the University of California, Irvine, and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Madsen, S.J., Christie, C., Hong, S.J. et al. Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 30, 1357–1365 (2015). https://doi.org/10.1007/s10103-015-1742-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10103-015-1742-5
Keywords
- Glioma
- Photothermal therapy
- Gold–silica nanoshells
- Rat macrophages